Multivariate regression: MR/PCR/PLS
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Let’s start from regression ...

* Regression of a floating value towards a fixed
value means that the floating value is
progressively approaching the fixed value.

* |n statistics ‘regression analysis’ is a statistical
process for estimating the relationship among
variables.

* |n particular: a dependent variable and one or
more independent variables (or 'predictors’).



dependent variable: y

Simplest case:
linear regression between two variables

Linear relationship:

r y=fx)
y=mx+q
O
A O O
O
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Regression parameters: - O = O
m = regression coefficient O % O O
g = intercept % B O
B O
O
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independent variable: x



Regression:

Linear regression analysis helps to understand how the typical
value of the dependent variable (or ‘response variable’)
changes when that of the independent variable (or factor
variable) is varied.

Typical value = most common value (average value, or mean if
the values are normally distributed).

In practice, regression analysis estimates the average value of
the dependent variable when the independent variables is
fixed.

At a given level of x defined as x;, y values approach a value y,
calculated by the function y = f(x).



Understanding regression

Approach a value does not mean assume a value.
This because any measured y variables has a variabillity.
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dependent variable: y
<
|

The vy, value calculated by regression is a
value that closely approches the average
value of y for that x; level.
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independent variable: x



Understanding regression

|deal regression implies y data variability for each x value.
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dependent variable: y

If data are normally distributed their frequency
(density) is higher around the mean value and
describes a Gaussian curve.
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independent variable: x



Understanding regression

Since regression uses ‘mean values’ as average values,
normal (Gaussian) data distribution should be assumed.

normal data distribution

dependent variable: y

average value

independent variable: x



Understanding regression

As a statistical tool, That’s why,

regression has to deal with regression has to deal with

data variability or uncertainty. ‘average values'.
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independent variable: x



dependent variable: y

Understanding regression

predicted y value

observed y value

independent variable: x

The discrepancies
(or differences)
between predicted
and observed values
are called residuals.

The higher the
discrepancy, the
lowest is the
goodness of the
regression.



dependent variable: y

Understanding regression

Residuals allows to judge the goodness of regression.

As an example: let's start from the same experimental
points and try to draw two different regression lines which
depicts data trend at a glance.

y =muX +q,
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independent variable: x independent variable: x

GOOD NOT GOOD



dependent variable: y

Understanding regression

At a first glance, the differences between expected and
predicted values (residuals) are higher in the graph on the
right side.

y =muX +q,
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independent variable: x independent variable: x

GOOD NOT GOOD



dependent variable: y

Understanding regression

In both graphs residuals could show negative values (below the
regression line) or positive values (above the regression line).
Negative values mean that predicted values are higher than observed,
positive values mean that observed values are higher than predicted.

dependent variable: y

independent variable: x independent variable: x

GOOD NOT GOOD



dependent variable: y

Understanding regression

The sum of residuals in both cases is equal to zero since
the positive and the negative deviations (or errors) from
the regression lines are equal. The sum of residuals is
not a good indicator of goodness of fit.

y =mxX+q; y =myX+qQ,
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independent variable: x independent variable: x

GOOD NOT GOOD



dependent variable: y

Understanding regression

The sum of the squares of residuals (RSS), which is
always higher than zero (since squares are always
positive), is much higher in the case reported in the graph
on the right than in the case reported in graph on the left.

y =myX +q,
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independent variable: x independent variable: x

GOOD NOT GOOD



Understanding regression

The sum of the squares of residuals (RSS) is generally
preferred to the sum of absolute values of residuals, which
IS also always higher than zero (since absolute values are
always positive), because squaring stresses the
differences among values.

Linear regression is
y = mX+q performed by computer
programs that
modulate the values of
linear regression
parameters m and q
until a combination m,,
g, Which minimizes
the RSS, is found.

dependent variable: y

independent variable: x



Understanding regression

Since regression minimizes the sum of the squares of
residuals (RSS) is also called least square regression.

y=mx+q;

dependent variable: y

independent variable: x

Statistical computer
programs uses different
algorithms in order to
minimize the RSS.

An algorithm is a step-by-
step set of operations to
be performed
consecutively.

The most common
algorithm is the Marquadt.



Goodness of fit

The residuals sum of squares (RSS) could be used to
evaluate the goodness of fit but, generally the coefficient
of determination or R? is preferred to this purpose.

S

R =1- _ Proportion of variance
) Intrinsic to y variable

The total sum of squares (TSS) is the sum of the squares
of y values.

R? is a number that indicates the proportion of the

variance in the dependent variable y that is predictable
from the independent variable x.



Variance and covariance

* R?account only for y variability or variance.

* In the case of a relationship between x and y both the variables
vary.

* In statistics, covariance is a measure of the joint variability of the
two (x and y) variables.

If the greater values of one variable (x) mainly correspond with the
greater values of the other variable (y) (and the same holds for the
lesser values), the covariance is positive and the variables tend to
show similar behavior.

In the opposite case, when the greater values of one variable mainly

correspond to the lesser values of the other, the covariance is negative
and the variables tend to show opposite behavior.



Covariance calculation

* In case x and y have equal probability (equal
probability distributions or probability density
functions), covariance could be calculated as:

COV(.5) =~ 3, = By, = E)

Where:

E(x) = x;, = predicted y, values
X; = X, = observed y; values
E(y) =y, = predicted y, values
Y, = V,, = observed y; values

N = number of xy observations



Correlation coefficient (r)

Pearson's correlation coefficient (r or p) is the covariance of the two
variables divided by the product of their standard deviations.

p=-1 -1<p <0

B cov(x,y)
()’x o ()-y 0< p <+1 p=+1 p=0

IOx,y

Is a measure of the linear dependence (correlation) between two
variables x and y. It has a value between +1 and -1, where 1 is total
positive linear correlation, 0 is no linear correlation, and -1 is total
negative linear correlation.



RZ2and r

In case of a linear regression between a finite set of x and y values equally
distributed:

Important!
/ 2 The two variables have different meanings and are
I = R differently calulated, but, in case of a linear regression,

they could be easily derived one from the other.

Generally three assumptions should be satisfied for linear regression analysis with two
variables:

1. the relationship between y and x should be linear;

2.y should be normally distributed;

3. x and y values should be equally distributed.



Understanding regression

The line on the right has more variability of y values around
each mean value (higher RSS) but also higher total y values

variability (higher TSS).

A

dependent variable: y

independent variable: x

—>

dependent variable: y

]
O

—

independent variable: x

These two regression lines have thus the same R?
because they have the same RSS/TSS ratio.



Understanding regression

The line on the right has more variability of y values and
thus the estimation of y given an x value is less precise.

dependent variable: y

independent variable: x independent variable: x

These two regressions have different errors of estimation (o).



Understanding regression

Standard Error of Estimation (o)
or Root Mean Square Error (RMSE)
or Root Mean Square Deviation (RMSD)

i=N
E()’i - Vi)
RMSE=‘/R—SS=\ =1 p
N N

Where:

RSS = residual sum of squares
Yip, = predicted y; values

Y., = observed y, values

N = number of y observations




Understanding regression

RMSE could be expressed as an absolute value or as a percentage

(CVRMSE):
=N
PCTESH
V =1
cVRMSE = TMSE 100 N 100
y y

Where y is the mean value of all y; data

CVRMSE permits to compare the results of regressions carried out
on different set of samples since it is independent from both
sample size and the mean value of the dependent variable (y).



Understanding regression

The concept of RMSD or RMSE is generally applied to studies
with a big amount of data.

When we have a big amount of data (n > 30) the number of y

values is high enough to assume that our data are a population
of data.

The mystic number 30 was suggested by an osservation of William Gosset, a
statistician and Head Brewer for Guinness, which published several articles
under the pseudonymous of Student.

However it should be pointed out that he never said that 30 was a ‘magic number’,
but, by comparing the correlation coefficients of a n sample with that of a population,
he concluded: “with samples of 30 ... the mean value of a correlation coefficient of a
sample approaches the real value of the correlation coefficent of a population
comparatively rapidly”.

Student (1908). Probable error of a correlation coefficient. Biometrika, 6 (2-3): 302—
310.



With a limited set of data ...

The N number, which compares in the calculation of
RMSE and r, is low (< 30).

When the N number is very low, we could not have
enough data to carry out a regression.

Why?



With a limited set of data ...

A standard deviation (o) is necessary to describe the
variability of an x variable in a sample with a limited number

of observation.

i=N

D (=)

a=SD=V i=1N—1

In order to calculate (o) the mean value x should be computed, so a
bond is introduced in a system.

The bond is a parameter that is not free to vary; so when we
introduce a bond, is like that we limit the variability of x of one
degree.




With a limited set data ...

In the same way, when we perform a linear regression
analysis betwwen an x variable and a y variable, the m and
g parameters should be calculated.

m and q are the bonds in linear regression analysis

The bond is a parameter that is not free to vary, so when
we introduce two bonds, is like that we limit the variability
of y (the dependent variable) of two degrees.

The degree of freedom in a regression are: N - 2



With a limited set of data ...

O,.; or Root Mean Square Error (RMSE) for a sample

RMSE =\/ RSS _ \/E(yp _yo) \I/?VShgrS:residual sum of squares

= Y, = predicted y values
(N — 2) (N _ 2) y, = observed y values
N = number of y observations
2 = n°® of regression parameters

RMSE could be expressed as CVRMSE as well:

RMSE \/E(yp _yO)

CVRMSE = ——=-100 = (N_" 2)
y y

-100




Regression implies an error

Since regression implies an error of approximation
(which could be described by RMSE), the formula
of a regression line could be written as:

y=mx+q+e

where:

m: regression coefficient
g: intercept

e: error of estimation



¢ and degree of freedom (dof)

Since we have two bonds (one for each regression
parameter: m and g) we need at leat three experimental
point to perform a linear regression.

A A

between two points, only with three points, there is one
one line could pass - degree of freedom -
> no degree of freedom > | the line with the lowest RSS
= no error of estimation 2 could be calculated
® o
= y=mx+q = y=mx+q+e
> >
c I=
(D) (D)
© ©
C C
(D) (D)
o o
(D) ()
© ©
—> —>
independent variable: x independent variable: x

For regression purposes a degree of freedom is needed.



Non linear regression

Modern statistical programs could

carry out also non
regression.

Examples:

polynomial relationships

linear

cubic

quadratic

asymptotic relationships
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Non linear models

Non linear models could have more than two
parameters.

Quadratic model:

y = ax? + bx + g (q being the intercept)
Cubic model:

y = ax3 + bx? + cx + g (g being the intercept)
Asymptotic model:

y= X +q(qbeing the intercept)
a + bx




Non linear models

Each additional parameter is a new bond and thus an addition
data point is required to guarantee a degree of freedom.

Linear regression requires at least three data points.
Quadratic regression requires at leat four data points.
Asymptotic regression requires at least four data points.
Cubic regression requires at leat five data points.

and so on ...



Non linear regression

For calculation purposes, non linear regression (NLR)
uses the minimization of RSS criterion similarly to
linear regression (LR).

RSS and R? are calculated in the same way as LR.

The Marquadt algorithm could be used as well for
NLR.

In order to calulate RMSE, the number of parameters
should be taken into account (parameters = bond).

Attention!!! In non linear regression: r # \/R2



Multivariate regression (MR)

Multiple regression analysis helps to understand
how the typical value of the dependent variable
(or 'criterion variable') changes when that of more
than one independent variables (predictors) is

varied.
z = f(x,y)
Since it is a regression ...

z=1(x,y) £ ¢ where € is the error of estimation.



dependent variable: y

Simplest case:

linear regression between a dependent variable and
two independent variables (factor variables)

‘>

dependent variable: z

independent variable: x independent variable: x

y=mx-+q Z=mx+myy+(q



dependent variable: z

Simplest case:

linear regression between a dependent variable and
two independent variables (factor variables)

dependent variable: z

independent variable: x independent variable: x

Z=mX+myy+q Z=mMX+myy+q
m,>0;m,>0;q>0 m,<0;m,<0;q>0



Multivariate regression (MR)

The regression model is a polynomial model that
has additive properties and could have one or
more independent variables.

where:
X; IS an independent variable

m, is the regression coefficient of x; (-2 < m < )

q is the intercept (- < q < ®)
€ is the error of estimation.
red letters correspond to regression parameter



Multiple linear regression model

Multiple linear regression (MLR) models have more than
two parameters.

Each additional parameter is a new bond and thus an
addition data point is required to guarantee a degree of
freedom.

The simplest model: z = ax + by + g, with three
parameters, requires at least four data point for
calculation purposes.



Combined effects:

MLR could consider combined effect between
independent/factor variables (es. xy)

)

dependent variable: y

independent variable: x

Z = MmMyX+myy + mgXy +q

m,>0;,m,>0;,m3>0;,9>0

dependent variable: z

independent variable: x

Z=m.X + myy myxy +q
m,;<0;m,<0;m;<0;9>0



MLR combined effects
When m;is >0

Synergistic effect (the combined effect is higher
than the sum of the effects of the two variables)

m,m, > m, + m,

When m;is <0

Antagonistic effect (the combined effect is lower
than the sum of the effects of the two variables)

mm, <m;+m,



Multiple regression:

could consider non linear effects
qguadratic effects

Z = myX2 + myX + mgy” + mpy +q Z = myX2 + myX + mgy” + mpy +q
m,<0;m,<0;m;<0;m,<0;q>0 m,>0;m,<0;m;>0;m,;<0;q9>0



Multivariate regression (MR)

A second degree regression model between one
dependent variable (z) and two independent/factor
variables (x,y).

Z=mX2+ myX+myy?+ myy+mxy+qz=e¢

where:
xand y are an independent variable

m. is the regression coefficient of a variable (-2 < m < )

q is the intercept (- < q < ®)
€ is the error of estimation.
red letters correspond to regression parameters



Multivariate linear regression (MLR)

In case of combined and quadratic effects, MLR
could be carried out by using both original variables
(e.g. x and y) and calculated variables (x4, y?, xy)

This is a x and y data linearization procedure that
allows to fit z data that are not linearly correlated to
X and y, by using a linear model.



Limits of multivariate regression (MLR)

MLR could be imply the use of many factors.

Multivariate linear regression requires that
independent/factor variables are not correlated

among them.

When the number of factors gets too large (e.qg.
greater than the number of observations), it is

possible to have data overfitting.



Partial MILR for factor reduction

* Partial multiple regression analysis could be carried
out in order to reduce the number of x variables.

* |n Partial MLR each variable is inserted in the model
using a stepwise method (one by one/step by step)
and its regression coefficient is calculated by setting all
the other variables constant.

* This tecnique does not take into account the effect of
other variables in the model and could cause a loss of
information.



Stepwise analysis

Forward stepwise analysis: variables are inserted one by one in the
model starting from the x variable that is most significantly
correlated to y (in terms of r and p) and its regression coefficient is
calculated by setting all the other variables constant, then another
variable is inserted. When the first x variable non significantly
correlated to y is encountered, it is removed from the model. This
removal process is repeated for all the other uncorrelated
variables.

Backward stepwise analysis: all variables are inserted in the model,
then the x variables that are less correlated to y (in terms of r and
p) are removed from the system one by one and the regression
coefficients of other variables are recalculated each time by partial
regression. When the first significantly correlated variable is
identified by the analysis, the procedure of removal is stopped.



Overfitting due to many factors

The blue curve which is polynomial model, with n
factorial variables, fits data perfectly (R% = 1).

When new data (red dots) are added, the model fails to
predict them.

A simple linear model with only one factor works better
In prediction.




Validation

Validation with an external data set (full cross
validation) could be used to test/avoid overfitting.

Another possibility i1s to carry out leave-one-out
validation (LOOV) .

LOOV validation, uses all but one sample to
calculate a MLR model and different MLR models
are calculated by leaving each sample out from the
data set.

Given n data, n models are obtained. The one that
better predicts the leaved out sample is the best.



Correlation among factors (MLR)

Another limit of MLR is correlation among factors

Correlation coefficient r between x and y variables
(or among all x; independent variables) should be
tested.

If the probability value (p) associated to r for a
given N number of observations is significant, MR
could not be performed.



Significance of correlation among
factors

Could be determined by computer program.

Could be found in statistical tables which reports
r and p values as a function of N.

In the latter case, care should be taken in
correcting N by taking into account the number
of bonds.



Correlation and collinearity

When there are a lot of independent variables
(factor variables) or combinations among them
(quadratic or combined effects) is more
probable to find significant correlations among
some of the factor variables.

In this case it is likely to have collinearity of
variables (e.g. factor x increase or decrease
lienarly with the increase of factor y)



MLR limits

* The overfitting of MLR models could be
avoided by stepwise analysis and validation.

* Correlation among variables, when present, is
a limit that could not be overcome without
resorting to latent variables extraction.



Significance of correlation and PCR

When factors are many and highly collinear among
them:

* |t is possible to carry out a PCA analysis and
extract new latent variables (PCs) that are not
correlated among them by construction.

 Then, it is possible to carry out a MLR or a MNLR
by using PCs instead of the original variables.

This procedure is called Principal Component
Regression (PCR).



Principal Component Regression

PCR permits to carry out MLR or MNLR avoiding the
problem of independent variables/factor correlation.

PCs explain only the maximum variance within a given
variables data set and do not consider the variation of an
average dependent/response variable (e.g. y variable)
value with the variation of the average values of
independent/factor variables (e.g. n x variables).

For this reason PCs could not be the best latent variables
to take in consideration in order to carry out a multiple
regression analysis using latent variables (or latent
structures).



Multiple regression by PLS

The acronym PLS stands for:

Partial Least Square

but nowadays the best definition is retained:
Projection on Latent Structure

since the regression is not performed by using
the original x. variables but using a number of
new variables called components calculated
from a linear combination of the original
variables.



Extraction of components

PCA calculates components that maximize the
explained variance of the data matrix.

PLS calculates components (latent structures) by
seeking directions in a n dimensional space
defined by a set of x variables.

A direction correspond to new factor described
by a vectors) that are associated to an high
variation of the response y variables.



‘Components’ or ‘Factors’?

Some texts (or statistical computer programs)
define the components calculated by PLS as
factors but, in some cases, this definitions could
be misleading, since the original independent
variables (x variables) are also called factorial
variables or factors.

Hereby, in these slides, they will be defined
components in order to avoid misleading.



Why ‘latent structures’?

Components are latent structures; that is
variables whose existence is inferred (deducted)
from the existing relationship among observed
items (factors and response variables).

Since the latent structure are calculated by
observing a relationship (linear relationship)
among variables, PLS is a regression method by
definition; for this reason many researchers call
it ‘PLS” and not ‘PLS regression’.



Extraction of components

Similarly to PCA, PLS calculates a number of
components (latent structures) that are linear
combinations of the original variables.

The number of components could range from i
(where i is the number of the original factor

variables) to 1.

n components explain the 100% of y variability.



Original data matrix for PLS

Y1
Y2
Y3
Ya
Ys
Ye
Y7
Vs
Yo

Y

N R S I I A
x1; X2, X3, x4, X5, - Xn,

x1,
x15
x1,
x1g
x1g
x1,
x1g

x1q4

x1

X2,
X25
X2,
X2
X2¢
X2,
X2g

X2,

X2,

X3,
X3,
X3,
X35
X3¢
X3,
X3g

X34

x3

x4,
x4,
x4,
X4
x4,
x4,
X4

X44

x4

x5,
X5,
X5,
X5
X5¢
X5,
X5¢

X54

x5

xn,
XN,
xn,
XN
XNg
xn,
XNg

XNg

Xn;

where:

y is the dependent
(response) variable

xn are the (independent)
factor variables

i is the number of
observations



Data matrix after PLS extraction

Y1
Y2
Y3
Ya
Ys
Ye
Y7
Vs
Yo

Yn

L a |l alal o] .| o
c,, C2, €3, C4  C5 Cn,

c1,
c1,
c1,
Cl,
C1,
c1,
C1,
c1,

C1,

c2,
2,
2,
2,
2,
c2,
C2,
2,

C2

c3,
c3,
c3,
3,
C3,
c3,
C3,
3,

c3

c4,
c4,
ca,
C4,
C4,
c4,
C4,
C4,

C4,

cs,
Cs,
cs,
o
C5,
cs,
C5,
Cs,

C5

Cn,
Cn,
Cn,
Cng
Cng
Cn,
Cng

Cng
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where:

y is the dependent
(response) variable

Cn are the components
calculated by PLS analysis
i is the number of
observations



PLS model

The final PLS model is:

y=m,C +m,C +m,C;+...+mC +q+¢€

where:

Cis a calculated component (latent structure)
m, is the regression coefficient of x, (-e0 < m < o)
g is the intercept (-o0 < g < =)

£ is the error of estimation

red letters correspond to regression parameter



PLS model

Since components are linear combinations of the original factor
variables (xn), statistical programs could easily recalculate the
model using xn as variables.

Y= MX, + MyX, + MyXg + ...+ mX, + 0+ €

where:

X is the original factor variable

m:. is the regression coefficient of x; (-eo < m < o)
g is the intercept (-o° < q < o0)

¢ is the error of estimation

red letters correspond to regression parameter



Extraction of components

n components explain the 100% of y variability.

By taking into account the components that
account for the maximum y variability, PLS could
be used to reduce the system dimensionality.

If the number of components is too large (for
example greater than the number of
observation) overfitting could occur also in PLS

regression analysis.



Regression technique

Even though it is carried out with calculated
components (latent structures) instead of original
variables, PLS uses the least square method for
regression purposes.

By considering only the components that account for
the maximum y variability, PLS could be used to reduce
the system dimensionality.

If the number of components is too large (for example
greater than the number of observation) overfitting
could occur also in PLS regression analysis.



PLS and ‘partial’ least square

* PLS method uses a ‘partial regression analysis’, which
means that each variable (component in this case) is
inserted to the model using a stepwise method (step
by step) and its regression coefficient is calculated by
setting all the other variables constant.

* This tecnique does not take into account the effect of
other variables (components) in the model but the use
of latent structures offers the advantage that the
variables are not correlated among them, thus their
effect is independent from the variable to be inserted.



Overfitting in PLS

The blue curve which is a PLS model, with n factorial
variables (LS), fits data perfectly (R? = 1).

When new data (red dots) are added, the model fails to
predict them.

A simple PLS model with only one factor works better in
prediction.




Avoiding overfitting

e |dentification of the number of components which
significantly increase the percent variation of the
response variable (y) of the PLS model.

Number of Percent Variation Accounted For

PLS Factors Responses
Factors Current Total | Current  Total

3935 3935 2870 28.70
2993 69728 2557 5427
794 7722 2187 7614
6.40 83 6.45 8259

5 new components
(Factors) calculated from
10 original factor variables

207 8569 1695 995

i

could account for the| <

1.20 86.89 0.38 9992
1.15 88.04 0.04 9996
1.12 89.16 0.02 9998
1.06 90.22 0.01 9999
1.02 9124 0.01 100.00

99.54% of the response
variable variation.

SOWoND|NlAWN =0




Validation of PLS

Validation with an external data set (full cross
validation) could be used to avoid overfitting.

Another possibility is to carry out leave-one-out
(LOOV) validation.

LOOV validation, uses all but one sample to
calculate a MLR model and different MLR models
are calculated by leaving each sample out from the
data set.

Given n data, n models are obtained. The one that
better predicts the leaved out sample is the best.



Avoiding overfitting by validation

ldentification of the number of components which
significantly decrease the RMSE of calibration of the
model (RMSEC) and the RMSE of prediction or
validation (RMSEV) of the PLS model.

lllllllllllllll

In the case of the results reported
on the graph, 4 components, out
of 15 calculated components, are
enough to minimize RMSEV below
10% and to reduce the RMSEC to
_ | a value that is lower than that of
| —m— Caiibration 1 RMSEV (about 5%).

‘_ —@— Validation

0.15 4

0.10

RMSE

0.05 A

0.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of components



Predicted values

Visualization of PLS results

% Calibration set
.+ Validation set

Observed values

An observed vs
predicted data plot
for calibration and
validation sets could
offer an opportunity
to visualize the
goodness of fit of the
regression model.



Orthogonal PLS (O-PLS)

Components extracted by PLS are orthogonal among
them for construction.

However since PLS maximizes the dependent variable
(y) variance at the variation of the factor variables (xn),
it is possible to have some systematic variation in the
response variable that is unrelated, or orthogonal, to
the factors variables.

O-PLS is a data pre-treatment used to avoid vy
systematic variation unrelated to x variables.

It is very usefull in spectrometric data processing.



PLS and PLS2

* PLS regression could be performed both using
one single y variable and a set of y variables.

e Just in the case that y variables are more than
one (y1, y2,vy3, ...yn) PLS is defined as PLS2.

 PLS maximizes the dependent variables (yn)
variance at the variation of the factor
variables (xn).



Original data matrix for PLS2

ElRREEE RN
yl, y2, y3,; - yn, x1,; X2, X3, . Xn,

yl, y2, y3, - yn, x1, X2, X3, . Xn,

yl, Y2, y3; - yn, x15 X2 X3, 50 XNz

vl y2, Y3, - yn, x1; X2 X3, Xn;
where:

yn are the dependent (response) variables
xn are the (independent) factor variables
i is the number of observations



Data matrix after PLS2 extraction

el sl i la ool | o
yl, y2, y3,; yn, C1, C2, C3, Cn,

yl, y2, y3, yn, C1, C2, C3, Cn,

yl, Y2, y3; yn, C1, C2, C3, Cn,

vl y2, Y3, yn; C1, C2 C3; Cn,
where:

yn are the dependent (response) variables

Cn are the components (or factors) extracted by PLS analysis
i is the number of observations



PLS Discriminant Analysis (PLS-DA)

As previously discussed, PLS is a regression analysis.

However, since PLS2 maximizes the dependent variable
(yn) variance at the variation of the factor variables
(xn), it is possible to use PLS2 as a discriminant analysis
by using y variables as classification variables and by
applying 0-1 binomial values to each yn variable.

When a sample does not belong to a y class, its values

for that class is 0; whilst when a sample belongsto ay
class, its value for that class is 1.

PLS-DA maximizes the variation of yn at variation of xn.



Data matrix for PLS-DA

O O O O O ©O O Fr P kP P Pk

o

o

c o r »r r »r »r O O O o o

o

o

, O O O O O O o o o o

[E

=

[EEN

EEEE N
x1; X2, X3, XNy

x1,
x15
x1,
x1g
X1
x1,
x1g

x1q4

x1.

X2,
X2
X2,
X2
X2¢
X2,
X2g

X2

X2

X3,
X3,
X3,
X3
X3¢
X3,
X3g

X34

X3,

xn,
XN,
Xn,
XNg
Xig
xn,
XNg

XN

xn,

This example is for three
grouping variable but in
PLS-DA there is no limit
for grouping variables.



Data matrix after PLS-DA extraction

O O O O O ©O O KB P kB kP k.

o

o

o o »r B r B O O O o o

o

o

, O O O O O O o o o o

=

[EEN

[EEN

N RN N
c1, C2, C3, Cny

c1,
c1,
c1,
Cl,
C1,
c1,
Cl,
C1,

C1

C2,
2,
2,
C2,
C2,
c2,
C2,
2,

C2

c3,
C3,
c3,
3,
3,
c3,
C3,
3,

C3;

Cn,
Cn,
Cn,
Cng
Cig
Cn,
Cng

Cng

Cn,

This example is for three
grouping variable but in
PLS-DA there is no limit
for grouping variables.



Orthogonal PLS-DA (O-PLS-DA)

O-PLS is a data pre-treatment used to avoid vy
systematic variation unrelated to x variables.

It is very useful in spectrometric data
processing.

O-PLS data pre-treatment could be used also for
PLS-DA and this improves the classification
power of PLS-DA.



O-PLS pretreatment for classification

PLS-DA O-PLS-DA




Exercise

- Carry out PLS-DA on the data set used for PCA
and LDA analysis

- Individuate the three most important
components for classes discrimination

- Visualize data using 3D graph



Original table
8 T 70 N T R

1.05 26.65 3.90 27.19 2.37 1.48 1.01
CR 15 0.64 7.23 4.76 35.98 3.01 1.29 1.51
CR 30 1.10 6.26 4.90 24.39 4.03 1.53 1.34
CR 60 0.89 2.80 1.87 18.21 3.85 6.98 1.05
CR 90 0.73 3.99 0.00 20.28 2.07 7.01 0.57
CR 180 1.18 1.93 2.03 13.66 4.56 6.55 1.15
KR 2 0.18 1.95 3.73 21.31 3.69 4.02 0.52
KR 15 0.54 0.04 5.05 16.89 2.29 2.95 1.28
KR 30 0.33 231 5.39 29.44 3.72 4.23 0.81
KR 60 0.43 1.40 9.49 10.38 1.35 2.92 0.64
KR 90 0.57 1.18 9.53 9.30 0.84 5.42 0.9
KR 180 0.43 1.88 6.65 14.61 2.03 2.75 1.03
PR 2 0.35 2.69 11.07 10.21 0.46 2.84 0.77
PR 15 0.45 4.65 8.77 11.77 0.33 4.03 0.82
PR 30 2.74 0.86 11.35 7.47 0.93 1.27 1.18
PR 60 0.87 0.60 16.12 5.22 0.28 3.95 1.05
PR 90 0.43 0.68 13.66 6.72 0.35 2.11 1.3

PR 180 0.31 1.68 11.77 8.17 0.43 1.47 1.76



Data matrix for PLS-DA
S L | e T 70 0 D T

1 0 0 1.05 26,65 3.90 2719 237  1.48 1.01
1 0 0 064 723 476 3598 301  1.29 1.51
1 0 0 110 626 490 2439 403 153 1.34
1 0 0 089 280 187 1821 385  6.98 1.05
1 0 0 073 399 000 2028 207 7.1 0.57
1 0 0 118 193  2.03 1366 456  6.55 1.15
0 1 0 018 195 373 2131 369  4.02 0.52
0 1 0 054 004 505 1689 229  2.95 1.28
0 1 0 033 231 539 2944 372 423 0.81
0 1 0 043 140 949 1038 135  2.92 0.64
0 1 0 057 118 953 930 084 542 0.9
0 1 0 043 188  6.65 1461 203 275 1.03
0 0 1 035 269 11.07 1021 046  2.84 0.77
0 0 1 045 465 877 1177 033  4.03 0.82
0 0 1 274 086 1135 747 093 127 1.18
0 0 1 087 060 1612 522 028  3.95 1.05
0 0 1 043 068 1366 672 035 211 1.3

0 0 1 0.31 1.68 11.77 8.17 0.43 1.47 1.76



Results

2.0

g o CR
ol 0o KR
' 'ﬁ ¢ PR
10}

The plot of y scores
= | along the first two
e components
goo_ permitted to
S discriminate among

g classes.

05

o 8

0 )
10+

6
15 - - - - - -

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Component 1



Variables

Compound IUPAC name ID PC1 loading PC2 loading
acetone propan-2-one 1 - -
ethyl acetate ethyl acetate 2 - -
2-butanone butan-2-one 3 -0.82 0.42
ethyl alcohol ethanol 4 0.88 0.13
diacetyl butane-2,3-dione 5 0.83 -0.23
2-pentanone pentan-2-one 6 0.11 -0.75
1-ethanone ethan-1-one 7 0.71 0.59
2-butanol butan-2-ol 8 -0.87 0.30
3-methyl-(2 o 3)-heptanol 3-methylheptan-(2 o 3)-ol 9 - -
thiophene thiophene 10 0.80 0.15
1-propyl alcohol propan-1-ol 11 - -
ethyl butyrate ethyl butanoate 12 - -
methyl butyrate methyl butanoate 13 - -
2-hexanone hexan-2-one 14 - -
5-methyl-2-hexanone 5-methylhexan-2-one 15 - -
hexanal hexanal 16 0.73 -0.05
isobutyl alcohol 2-methylpropan-1-ol 17 - -
3-methyl-2-butanol 3-methylbutan-2-ol 18 - -
2-pentanol pentan-2-ol 19 - -
butyl alcohol butan-1-ol 20 - -
2-heptanone heptan-2-one 21 0.03 -0.92
heptanal heptanal 22 0.92 0.28
isoamyl alcohol 3-methylbutan-1-ol 23 - -
ethyl hexanoate ethyl hexanoate 24 - -
2-methyl hexanoate 2-methyl hexanoate 25 - -
1-pentanol pentan-1-ol 26 0.93 0.21
2-octanone octan-2-one 27 -0.16 -0.94
acetoin 3-hydroxybutan-2-one 28 0.87 0.08
octanal octanal 29 - -
1-heptanol heptan-1-ol 30 -0.75 -0.03
isobutyl hexanoate 2-methylpropyl hexanoate 31 -0.70 0.42
hexanol hexan-1-ol 32 0.76 0.53
2-methyl-3-pentanol 2-methylpentan-3-ol 33 - -
2-nonanone nonan-2-one 34 -0.26 -0.88
nonanal nonanal 35 - -
ethyl heptanoate ethyl heptanoate 36 - -
ethyl octanoate ethyl octanoate 37 - -
acetic acid acetic acid 38 -0.87 0.09
8-nonen-2-one non-8-en-2-one 39 -0.11 -0.82
propionic acid propanoic acid 40 -0.84 0.27
2-nonenale non-2-enal 41 - -
benzaldehyde benzaldehyde 42 - -
2-undecanone undecan-2-one 43 - -
butyric acid butanoic acid 44 -0.92 0.26
isovaleric acid 3-methylbutanoic acid 45 -0.79 0.22
2-thiopheneethanol 2-thiophen-2-yl ethanol 46 - -
phenylacetaldehyde 2-phenylacetaldehyde 47 - -
2-thiopheneacetic acid 2-thiophen-2-yl acetic acid 48 - -
hexanoic acid hexanoic acid 49 -0.86 0.28
phenethyl alcohol 2-phenylethanol 50 0.78 0.20
octanoic acid octanoic acid 51 - -
nonanoic acid nonanoic acid 52 - -
decanoic acid decanoic acid 53 -0.06 0.75




Variables for classification

Number of components: 2

0.3

The regression
coefficient between
x and y could
permit to
individuate the
most important
variables for
s ampl e s
classification out of
the 55 initial
variables.

Regression coefficient

0.2

-0.3

£ 3 5 3 9 11 13715 AT 1921 23.25.27 29 31 33 35::37 39 41 -43 45 47°-49 61 53:65
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Factor variables (x)



Results

PLS-DA was carried out on the data set.

2 components permitted to discriminate
samples to classes and to individuate the most
important variables for sample classification.

The results were well presented by plotting the
y scores of samples on the plane defined by C1

and C2.



