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ABSTRACT: In natural fertilisation, the female reproductive tract allows only a strictly selected sperm subpopulation to proceed in the
vicinity of an unfertilised oocyte. Female-mediated sperm selection (also known as cryptic female choice (CFC)) is far from a random
process, which frequently biases paternity towards particular males over others. Earlier studies have shown that CFC is a ubiquitous phe-
nomenon in the animal kingdom and often promotes assortative fertilisation between genetically compatible mates. Here, I demonstrate
that CFC for genetic compatibility likely also occurs in humans and is mediated by a complex network of interacting male and female genes.
I also show that the relative contribution of genetic compatibility (i.e. the male–female interaction effect) to reproductive success is gener-
ally high and frequently outweighs the effects of individual males and females. Together, these facts indicate that, along with male-
and female-dependent pathological factors, reproductive failure can also result from gamete-level incompatibility of the reproductive
partners. Therefore, I argue that a deeper understanding of these evolutionary mechanisms of sperm selection can pave the way towards a
more inclusive view of infertility and open novel possibilities for the development of more personalised infertility diagnostics and
treatments.

Key words: cryptic female choice / evolution / fertilisation / genetic incompatibility / infertility / mate choice / personalised reproductive
medicine / sexual selection / sperm function

Introduction
Modern ARTs have helped millions of infertile couples to bypass their
reproductive challenges. Thus, development of ART is indisputably one
of the greatest achievements of medicine. However, despite the dem-
onstrated efficiency of these treatments, the success rate of ART is still
far from perfect, and many couples either fail to achieve pregnancy or
need several treatment cycles to attain parenthood (Sakkas et al.,
2015; De Geyter et al., 2018). Furthermore, diagnosis of infertility is
extremely challenging (e.g. Gelbaya et al., 2014; Oehninger and
Ombelet, 2019), and in a significant proportion of couples, the reason
for infertility remains unexplained (Ray et al., 2012).

According to the current diagnostic practice, infertility is expected to
arise from male- and female-dependent pathological factors or a com-
bination of male and female factors (Gardner et al., 2018). However,
in addition to male and female pathologies, natural fertilisation success
is also heavily dependent on the ability of sperm to traverse the female
reproductive tract in the vicinity of an unfertilised oocyte (Fitzpatrick
and Lüpold, 2014; Sakkas et al., 2015). Importantly, it has been esti-
mated that in humans, only about 1 out of 1 000 000 sperm are able

to enter female oviducts, and only a few of these cells eventually man-
age to enter the fertilisation site, the ampulla (Eisenbach and Giojalas,
2006). Therefore, natural fertilisation is a highly selective process, in
which only very few sperm cells are able to reach the unfertilised oo-
cyte (Holt and Fazeli, 2015; Hanevik et al., 2016). Consequently, the
fertilisation success of sperm is dependent on not only the intrinsic
quality of the ejaculate (or the pathology of the female reproductive
system) but also on the ability of sperm to successfully interact with
the female reproductive tract and the oocyte (Fitzpatrick and Lüpold,
2014). In this sense, functionally relevant phenotypic evaluation of ejac-
ulates may be practically impossible in the absence of the selective fac-
tors of the female reproductive tract.

Sperm are incapable of fertilising an oocyte immediately after ejacu-
lation and fertilisation competence is achieved only in the female re-
productive tract via a series of physiological changes known as sperm
capacitation. Capacitated sperm show intense flagella beating (hyperac-
tivation) and directional motility (chemotaxis) towards the chemical
factors secreted by unfertilised oocytes. Only capacitated sperm can
undergo the acrosome reaction, penetrate the zona pellucida and
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eventually bind and fertilise an oocyte. All these processes are strongly
dependent on the secretions of the female reproductive tract, the oo-
cyte and its surrounding cumulus and granulosa cells. Together, these
female-induced biochemical factors allow highly specific sperm selec-
tion, possibly even at the level of individual spermatozoa (Holt and
Fazeli, 2015). Traditionally, it has been thought that the female-induced
sperm selection mechanisms have evolved primarily to eliminate
fertilisation-incompetent sperm or to reduce the risk of polyspermy
(Fitzpatrick and Lüpold, 2014; Kekäläinen and Evans, 2018). However,
in this article, I show that female-mediated sperm selection can also fa-
cilitate assortative fusion between genetically compatible gametes.
Based on this evidence, I argue that reproductive failure does not nec-
essarily exclusively represent a pathological condition, but can also re-
sult from sexual selection (‘mate choice’) at the level of the gametes.
Thus, better integration of this evolutionary concept into current infer-
tility diagnostics may provide novel insights into the development of
more accurate and personalised infertility diagnostics and treatments.

Cryptic female choice and
gamete-mediated mate choice
Mate choice has traditionally been assumed to occur only at the level
of the individuals (i.e. between males and females). However, in many
species, it has been demonstrated to continue after mating in the form
of cryptic female choice (CFC) (Firman et al., 2017). CFC refers to var-
ious female-driven mechanisms that act primarily prior to (or during)
fertilisation and bias fertilisation towards the sperm of specific males. In
many animal species, CFC is mediated by various female-derived re-
productive secretions or via gamete surface molecules, both of which
can have major impact on the fertilisation dynamics (Fig. 1). Together,
these chemical factors mediate CFC at the level of the gametes (gam-
ete-mediated mate choice (GMMC)) (reviewed by Kekäläinen and
Evans, 2018). GMMC has previously been demonstrated to occur pri-
marily in externally fertilising species, such as marine mussels, in which
egg-derived sperm chemoattractants selectively change sperm swim-
ming behaviour and thereby promote assortative fertilisation between
genetically compatible gametes (e.g. Evans et al., 2012; Oliver and
Evans, 2014). Furthermore, several fish studies have demonstrated that
a similar fertilisation bias towards particular males can also be mediated
by ovarian fluid (Urbach et al., 2005; Dietrich et al., 2008; Rosengrave
et al., 2008; Gasparini and Pilastro, 2011; Rosengrave et al., 2016;
Geßner et al., 2017).

In internally fertilising species, GMMC occurs within the female re-
productive tract, which has hampered experimental attempts to dem-
onstrate GMMC in such species, including humans. These technical
difficulties most likely largely explain why experimental evidence of
GMMC in humans has been lacking. However, Fitzpatrick et al. (2020)
recently demonstrated that in humans, follicular fluid highly selectively
attracts the sperm of specific males over others, and in this way, facili-
tates mate choice at the level of the gametes (Fig. 1). Additionally,
Jokiniemi et al. (2020a,b) demonstrated (also in humans) that sperm
performance in different female reproductive secretions (follicular fluid
and cervical mucus) is strongly dependent on the male–female combi-
nation. In other words, female reproductive secretions were found to
selectively increase sperm performance of some males but decrease it
in for others. In both studies, sperm performance was also found to

be higher in human leucocyte antigen (HLA) dissimilar male–female
combinations, which suggests that the female reproductive tract may
non-randomly promote gamete fusion between HLA compatible part-
ners. Magris et al. (2021) also demonstrated that in addition to HLA,
sperm performance in the female reproductive tract is dependent on
the structural similarity of male and female immunoglobulins (antibod-
ies). Together with the earlier findings in different animal species, these
results indicate that one of the primary functions of GMMC may be to
‘evaluate’ the immunogenetic compatibility of the reproductive part-
ners prior to gamete fusion.

Genetic interactions, genetic
(in)compatibility and
reproductive success
The effect of each individual gene on a phenotype is often assumed to
be additive, when the combined effect of alleles at two or more gene
loci should equal the sum of their separate effects (additive genetic ef-
fect). In other words, the phenotypic effect of genes is expected to be
independent of all the other genes. However, in all sexually reproduc-
ing organisms, the genotypes of the individuals consist of complex net-
works of genetic interactions (non-additive genetic effects). These
interactions can occur among alleles at the same locus, when one allele
of a gene masks or overrides the effect of another allele of the same
gene (dominance). Additionally, genetic interactions occur between dif-
ferent loci in a phenomenon known as epistasis, in which the pheno-
typic effect of one locus is enhanced or suppressed by the genotypes
at the other locus (or there is a change in the direction of phenotypic
effects) (Mackay, 2014). In both dominance and epistasis, the final ef-
fect of a gene (or allele) on the phenotype depends on the genotype
of the associated genes (or alleles).

Non-additive genetic effects, and especially epistasis, have tradition-
ally been assumed to act as important mechanisms maintaining the re-
productive isolation between species (Hart et al., 2018). However,
recent studies have demonstrated that epistatic interactions are also
common within single species, including humans (Rohlfs et al., 2010;
Corbett-Detig et al., 2013; Mackay, 2014; Wang et al., 2017).
Importantly, non-additive genetic effects (of the male–female combina-
tion) are often much more important determinants of oocyte fertilisa-
tion success, embryo survival and fertility traits in general, compared
with additive genetic effects of males or females (Palucci et al., 2007;
Dziminski et al., 2008; Rodrı́guez-Mu~noz and Tregenza, 2009; Agbali
et al., 2010). In other words, reproductive success is frequently more
strongly dependent on the male–female compatibility than on individual
males and females. This indicates that the same genetic mechanisms
responsible for preventing crossbreeding between individuals of differ-
ent species can also lead to variation in reproductive compatibility be-
tween individual males and females within each species. Accordingly,
certain male (sperm) genotypes that have high reproductive success
with certain female (oocyte) genotypes can have much lower repro-
ductive success with other female genotypes.
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..Molecular mechanisms of
gamete-mediated mate choice
Widespread evidence for female-mediated fertilisation bias towards
the sperm of genetically compatible males suggests that the female re-
productive tract and oocytes can identify compatible sperm genotypes
based on specific gamete surface molecular markers (Holt and Fazeli,
2015). Consequently, some earlier studies have demonstrated that
gamete compatibility genes are expressed on the surface of the sperm
and oocytes, and particularly male and female gamete surface proteins
have been widely believed to play an important role as molecular tar-
gets in compatibility recognition (e.g. Stapper et al., 2015; Springate
and Frasier, 2017) (Table I). Genes coding gamete surface proteins
are among the fastest-evolving genes known (Swanson and Vacquier,
2002; Springate and Frasier, 2017), and GMMC is expected to act as
an important driver of this evolutionary process, facilitating continual
coevolution (reciprocal evolutionary change) between sperm and oo-
cyte proteins (Springate and Frasier, 2017, see below). Due to this co-
evolutionary process, different variants (alleles) of the coevolving gene
pairs often have differential compatibility, which can ultimately lead to
complete incompatibility (i.e. reproductive failure) between certain al-
lele pairs (Ziegler et al., 2005).

In addition to proteins, it has been shown that gamete compatibility
is also dependent on their surface carbohydrates (glycans). Ghaderi

et al. (2011) demonstrated in mice that reproductive incompatibility
between males and females is caused by a female immune response
against certain (‘mismatched’) sperm surface glycans. Similarly,
Kekäläinen and Evans (2017) showed in a marine mussel that egg-
derived chemical factors trigger structural changes in sperm surface gly-
cans and sperm fertilisation capability, and that the strength of these
physiological changes is strongly dependent on the male-female combi-
nation. Kekäläinen and Evans (2017) also demonstrated that the com-
patibility verification process of the gametes likely commences before
the physical contact of the sperm and oocytes, via chemical signals se-
creted by the female reproductive tract and unfertilised oocytes
(reviewed by Kekäläinen and Evans, 2018). This is important, because
during the fertilisation process, sperm are exposed to multiple female-
derived reproductive secretions, including follicular fluid, oviductal fluid,
uterine fluid and cervical mucus, indicating that the selection of geneti-
cally compatible sperm can occur in different parts of the female
reproductive tract.

Potential (in)compatibility genes
in humans and other mammals
The identities of interacting male and female genes responsible for
gamete-level incompatibilities are still largely unclear, and only a few

Figure 1. Schematic illustration of the potential mechanisms of gamete-mediated mate choice in humans. (A) Surface proteins and
glycans of the oocyte–cumulus complex and sperm chemoattractants released by these cells (e.g. chemokines, peptides and odourants); (B) other fe-
male-derived reproductive secretions; (C) various genes of the immune system. Together, these female-derived factors cause a number of physiologi-
cal changes in sperm (D) that can selectively bias fertilisation towards the sperm of genetically compatible males (E).
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potentially interacting candidate genes have been found. This is largely
due to the fact that only one directly interacting sperm–oocyte ‘binding
protein’ pair has so far been identified (Izumo1–Juno: Bianchi et al.,
2014; Bianchi and Wright, 2020). However, it is likely that many other
gamete surface proteins play important roles as mediators of sperm
and oocyte interactions. Supporting this view, gamete surface ‘repro-
ductive’ proteins have been demonstrated to diverge (evolve) rapidly,
and continual coevolution between interacting sperm and oocyte pro-
teins is likely a key driver of this divergence (Clark et al., 2009). In this
coevolutionary process, one or both ‘members’ of the interacting pro-
tein pairs adaptively compensates for changes in the other, which can
eventually lead to variation in reproductive compatibility between cer-
tain allele pairs of the male and female genes encoding these proteins
(Hart et al., 2018).

Accumulating numbers of studies have highlighted that coevolution
between sperm and oocyte genes is likely common in mammals, in-
cluding humans (Vicens and Roldan, 2014; Hart et al., 2018). For ex-
ample, Grayson (2015) showed that Izumo1 and Juno are coevolving
under similar selection pressures, which are at least partly driven by
sexual selection. This indicates that some Izumo1-Juno allele pairs have
higher compatibility (gamete fusion success) than others, causing varia-
tion in the compatibility between reproductive partners. Rohlfs et al.
(2010) also demonstrated in humans that the zona pellucida (glycopro-
tein layer surrounding the oocyte) gene ZP3 coevolves with its putative
binding partner, ZP3R, in sperm (Table I). Furthermore, recent ge-
nome editing studies have revealed several other sperm- and oocyte-
specific genes that play an important role in gamete interaction (Abbasi
et al., 2020; Fujihara et al., 2020; Lamas-Toranzo et al., 2020; Noda

et al., 2020). Although the binding partners of these genes remain to
be demonstrated in future studies, all of them have a potential to in-
crease our understanding of the molecular mechanisms of gamete
incompatibility.

Many of the key molecules responsible in gamete recognition and
binding are not directly situated on gamete surfaces but are dispersed
in various female reproductive secretions (Bernabò et al., 2014).
Accordingly, sperm behaviour and function in the female reproductive
tract are strongly dependent on a large array of female-derived soluble
factors, such as chemokines, small peptides and odourant molecules
(Brenker et al., 2012). Furthermore, it has been demonstrated that
many female-derived factors are transferred from the female reproduc-
tive fluids onto the sperm plasma membrane prior to fertilisation (Al-
Dossary et al., 2013). For example, two key oocyte surface proteins
(CD9 and CD81) known to be involved in sperm–oocyte fusion are
also released from oocytes via exosomes (oocyte-derived extracellular
vesicles) and interact with sperm before the physical contact of the
gametes (Ohnami et al., 2012). Interestingly, many sperm plasma
membrane protein genes, such as SPAM1, PMCA4a, CRISP1 and
CATSPER, are also expressed in the female reproductive tract (Griffiths
et al., 2008; Al-Dossary et al., 2013; Ernesto et al., 2015; Martinez
et al., 2020) and have an important role in regulating sperm function
(reviewed by Hernández-Silva and Chirinos, 2019). For example,
female-derived CRISP1 proteins were found to regulate sperm Ca2þ

channels critical for sperm motility (Ernesto et al., 2015). Crucially, fer-
tilisation of the oocytes of CRISP1 knockout female mice was severely
impaired, indicating that female-expressed CRISP1 proteins have a key
function in determining the fertilisation capability of sperm.

............................................................................................................................................................................................................................

Table I Oocyte and sperm genes that are known to mediate physical interactions between gametes and are essential for
fertilisation in mammals.

Oocyte Function Location Effect Ref.

CD9 Sperm–oocyte fusion Oocyte surface Deletion: fertility �40% 1

CD81 Sperm–oocyte fusion Oocyte surface Deletion: fertility �38% 1

Juno Sperm–oocyte membrane adhesion Oocyte surface Deletion: 100% infertility 2

ZP1-ZP3 Sperm–oocyte binding/coevolution Zona pellucida Sperm–egg compatibility 3,4

Sperm

Izumo1 Sperm–oocyte membrane adhesion Sperm surface after AR Deletion: 100% infertility 5

FIMP Sperm–oocyte fusion Sperm equatorial segment Deletion: severe subfertility 6

THEM95 Sperm–oocyte fusion Sperm plasma membrane Deletion: 100% infertility 7

SOF1 Sperm–oocyte fusion Sperm plasma membrane Deletion: 100% infertility 7

SPACA6 Sperm–oocyte fusion Sperm plasma membrane Deletion: 100% infertility 7

DCST1/DCST2 Sperm–oocyte fusion Sperm plasma membrane Deletion: 100% infertility 8

C4BPA (ZP3R) Sperm–oocyte binding/coevolution Sperm plasma membrane Sperm–egg compatibility 3,4

PKDREJ Zona pellucida (ZP) binding Sperm acrosome Mutation: lower fertility 9

CRISP1/CRISP2 Sperm–oocyte interaction Sperm plasma membrane Blocking: lower fertility 9

PH-20 Cumulus penetration þ ZP binding Sperm plasma membrane Deletion: delayed fertilisation 9,10

Zonadhesin ZP binding Sperm acrosome Blocking: lower fertility 9

See also Gahlay and Rajput (2020) for a comprehensive list of sperm genes involved in the interaction of the sperm with the female reproductive tract interaction.
AR, Acrosome reaction.
References: 1. Rubinstein et al., 2006; 2. Bianchi et al., 2014; 3. Rohlfs et al., 2010; 4. Hart et al., 2018; 5. Inoue et al., 2005; 6. Fujihara et al., 2020; 7. Noda et al., 2020; 8. Inoue et al.,
2021; 9. Springate and Frasier, 2017; 10. Baba et al., 2002.
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.
Together this evidence indicates that genetic compatibility of the re-

productive partners may be dependent on the complex network of
interacting male and female genes. These genes may not be expressed
exclusively on the sperm or oocyte surfaces, but are likely already act-
ing before the physical contact of the gametes via female reproductive
tract secretions. This, in turn, indicates that the reproductive compati-
bility of the partners may be a result of a large number of functionally
redundant and possibly relatively weak receptor–ligand interactions
(Wright and Bianchi, 2016), which collectively determine the overall
compatibility of the partners.

Clinical significance and future
challenges
The primary reason for fertilisation failure in conventional IVF is an unsuc-
cessful sperm–oocyte interaction (Sabetian et al., 2014). It has commonly
been assumed that this is primarily caused by some defects in sperm or
oocyte membrane proteins mediating the interaction (Sabetian and
Shamsir, 2017) or other abnormalities in the ability of sperm to bind and
penetrate the zona pellucida (Hamada et al., 2011). However, Firman
and Simmon (2015) demonstrated in mice that the success rate of IVF is
also dependent on oocyte-driven mechanisms of sperm selection that
bias fertilisation towards the sperm of genetically compatible (non-sibling)
males. Similarly, Stapper et al. (2015) found in sea urchins that eggs non-
randomly fused with the sperm that had cell surface protein (bindin) gen-
otypes similar to their own. Finally, Lenz et al. (2018) showed in stickle-
backs that after controlled IVF, eggs can distinguish sperm genotypes
even at the level of individual alleles (haplotypes) and assortatively fuse
with complementary sperm haplotypes. Together with the above-
mentioned facts, these findings indicate that fertilisation failure does not
necessarily represent a pathological condition, but can also result from
genetic incompatibility avoidance at the level of the gametes.

Besides affecting the probability of the fertilisation, the compatibility
of the gametes at fertilisation has also been demonstrated to be posi-
tively associated with embryo survival (Dziminski et al., 2008;
Rodrı́guez-Mu~noz and Tregenza, 2009; Agbali et al., 2010; Aguirre
et al., 2016; Byrne et al., 2021). Therefore, it is likely that the genetic
compatibility of the reproductive partners has a major impact on both
fertilisation success and the probability of achieving successful preg-
nancy and, in this way, influences the overall success rate of infertility
treatments. However, according to the definition currently used by the
World Health Organization (WHO), infertility is seen as a disease of
the reproductive system and is thus assumed to be caused by male- or
female-derived pathological factors. In light of previous findings, this
may be an overly simplistic view, since it misses the important fact that
some male-female (gamete) combinations often ‘match’ better than
the others. Therefore, I argue that we need a more inclusive definition
of infertility, one which takes into account the possibility that the prob-
ability of conception is also affected by the evolutionary mechanisms
that strive to ensure the compatibility of the parental genes prior to
gamete fusion. This broader definition of infertility can open novel pos-
sibilities to better understand the current reliability challenges of infer-
tility diagnostics and to understand why the current diagnostic tests
frequently fail to find any clear reason for reproductive failure (Ray
et al., 2012) (Table II).

Fertility traits and reproduction success in general are often domi-
nated by non-additive genetic effects (e.g. Alves et al., 2020).
Therefore, in order to predict the probability of conception in individ-
ual couples, it is critically important to gain an understanding of how
specific male and female genes interact during the fertilisation process.
Consequently, deeper understanding of epistatic and dominance inter-
actions between reproductive partners has a great potential to im-
prove the accuracy of infertility diagnostics and facilitate development
of more personalised diagnostic tools (Table II). Personalised repro-
ductive medicine is still in its infancy, and routine clinical tests for pa-
rental genetic compatibility are lacking (Beim et al., 2017). However,
the rapidly decreasing costs of modern whole-genome sequencing
techniques raise an important possibility of including genome-wide
characterisation of incompatibility genes in future diagnostics routines.
Importantly, recent advances in analytical methods now enable robust
identification of genetic interactions and genetic interaction networks
from the genome-wide data (e.g. Fang et al., 2019; Sun et al., 2020).

As highlighted above, accumulating evidence indicates that the defini-
tive reproductive incompatibility of the partners is affected by large num-
ber of male and female genes, many of which are expressed in female
reproductive tract secretions. Consequently, these female-derived secre-
tions could potentially enable diagnosis of the reproductive incompatibility
of the partners without the need to fertilise the oocytes (cf. Jokiniemi
et al., 2020a,b; Magris et al., 2021). Furthermore, female reproductive
secretions could also open novel possibilities for the development of bio-
logically more realistic functional tests for sperm fertilisation capability
and male fertility. Thus, besides allowing the evaluation of the reproduc-
tive compatibility of the couples, such functional tests could also increase
the overall predictive value of semen analyses (Table II). In practice,
sperm functional tests could involve, for example, measuring sperm
physiological response to follicular fluid or cervical mucus, both of
which can be relatively easily collected during routine ART proce-
dures. Additionally, it has been demonstrated that sperm functional
response in ‘non-reproductive’ biological fluids, such as serum, could
potentially be used as a reliable indicator of sperm motility and func-
tion in female-derived reproductive fluids (Lee et al., 1994; Mandal
et al., 2006; Dungdung et al., 2016). This raises an intriguing possibil-
ity that the reproductive compatibility of the partners could be
screened as a part of the initial infertility testing, which could provide
novel opportunities to tailor the following infertility treatments to
each couple. However, more studies are needed to experimentally
investigate the diagnostic potential of proposed reproductive incom-
patibility tests and to identify the most suitable candidate genes and
other biomarkers to be utilised in such tests.

Conclusion
According to the current definition, infertility is a disease of the male or
female reproductive system. However, an infertility diagnosis can be ex-
tremely challenging, and the exact reason for infertility often remains un-
known. Recent evolutionary studies have demonstrated that, in addition
to being dependent on individual males and females, fertilisation success
is also strongly dependent on the reproductive compatibility of the part-
ners (non-additive genetic effects) and that the definitive ‘test’ for male–
female compatibility occurs in the female reproductive tract prior to the
fertilisation. Therefore, it seems likely that reproductive failure is not
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exclusively a pathological condition but is also affected by mate choice
at the level of the gametes, which reduces the probability of conception
between genetically incompatible partners. GMMC is likely based on
complex network of interacting male and female genes, which are
expressed both on the surface of the gametes and in the female repro-
ductive tract secretions. Besides mediating sperm selection towards
those of compatible partners prior to the physical contact of the game-
tes, female-derived reproductive secretions may also offer novel tools
to diagnose the reproductive incompatibility of the partners and thus fa-
cilitate development of biologically more realistic fertility tests. Overall, a
deeper understanding of molecular basis of reproductive incompatibility
may open novel possibilities to overcome the barriers to truly personal-
ised infertility diagnostics and treatments.

Data availability
No new data were generated or analysed in support of this research.

Author’s roles
The manuscript was written by the author only.

Acknowledgements
I would like to thank Annalaura Jokiniemi for comments on the earlier
version of the manuscript.

Funding
Funding was received from the Academy of Finland (308485).

Conflict of interest
The author declares that no conflicts of interest exist.

References
Abbasi F, Kodani M, Emori C, Kiyozumi D, Mori M, Fujihara Y, Ikawa

M. CRISPR/Cas9-mediated genome editing reveals Oosp family
genes are dispensable for female fertility in mice. Cells 2020;9:821.
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