UTERINE TUBES

- Infundibolo
- Ampulla
- Isthmo
- UTERO
- OVAIO
- UTERO
The uterine tubes can be divided into three major parts:

1. the infundibulum
2. the ampulla
3. the isthmus
The uterine tubes (also called Fallopian tubes or oviducts):

1. transport the ovum from the ovary to the site of fertilization
2. help transport spermatozoa, the haploid male gametes, from the site of deposition to the site of fertilization
3. provide an appropriate environment for fertilization
4. transport the fertilized oocyte (embryo) to the uterine horns/uterus where implantation and further development may occur.
TRANSPORT SPERMATOZOA

• In VAGINA: rabbits, ruminants, primates.

• In UTERUS: pig, equine, bitch.
Human female reproductive tract illustrating stages of gamete transport. (A) Sperm entering cervical mucus at external os of cervix. The mucus fills the upper half of the inset. (B) Sperm interacting with endosalpingeal epithelium in Fallopian tube. (C) Hyperactivated motility of sperm in Fallopian tube. (D) Oocyte in cumulus within a transverse section of the tubal ampulla.
Sperm Concentration Gradient

10^2 sptz

10^8 sptz/ml
The uterine tubes are paired tubular organs with the typical organization of a tubular organ, i.e., four tunics consisting of:

1. tunica mucosa
2. tunica submucosa-lamina propria
3. tunica muscularis
4. tunica serosa.

The thickness and specific characteristics of these tunics varies with the region of the uterine tube.
UTERINE TUBES: MICROSCOPIC STRUCTURE

- mucosa
- lamina propria
- submucosa
- muscolaris
- serosa
The epithelium of the tunica mucosa is **simple columnar** and contains two types of cells:

1. **ciliated**; ciliary beating causes caudal fluid flow, to move the oocyte toward the uterus;

2. **non-ciliated secretory cells**
TUNICA MUCOSA

- Ciliated cells
- Non-ciliated cells
- Non-ciliated (peg) cells
- Ciliated epithelial cells
TUNICA SUBMUCOSA-LAMINA PROPRIA

- mucosa
- lamina propria
- submucosa
TUNICA MUSCULARIS AND SEROSA
The tunica mucosa is highly branched and folded, especially in the infundibulum and ampulla.
INFUNDIBULUM/AMPULLA

5 X

20 X
Cyclic Changes in the Epithelium

FOLLICULAR PHASE

LUTEAL PHASE
Cyclic Changes in the Muscularis

In the istmus the peristaltic contractions undergo cyclic changes.

In the **follicular** phase antiperistaltic contractions causes a cranial fluid flow towards the ampulla.
In the **luteal** phase, strong contractions causes caudal fluid flow, to move the embryo toward the uterus.