
Biochimica et Biophysica Acta 1842 (2014) 1981–1992

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r .com/ locate /bbad is
Review
Rapidly expanding knowledge on the role of the gut microbiome in
health and disease☆
M.C. Cénit a,1, V. Matzaraki a,1, E.F. Tigchelaar a,b, A. Zhernakova a,b,⁎
a Department of Genetics, University Medical Centre Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, the Netherlands
b Top Institute Food and Nutrition, Wageningen, the Netherlands
☆ This article is part of a Special Issue entitled: From Ge
⁎ Corresponding author at: Genetics Department, Unive

P.O. Box 30001, 9700 RB Groningen, The Netherlands. Tel
E-mail address: a.zhernakova@umcg.nl (A. Zhernakov

1 These authors made equal contributions.

http://dx.doi.org/10.1016/j.bbadis.2014.05.023
0925-4439/© 2014 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 17 January 2014
Received in revised form 3 May 2014
Accepted 24 May 2014
Available online 2 June 2014

Keywords:
Microbiome
Next-generation sequencing
Meta-omics
Autoimmunity
The human gut is colonized by a wide diversity of micro-organisms, which are now known to play a key role in
the human host by regulating metabolic functions and immune homeostasis. Many studies have indicated that
the genomes of our gutmicrobiota, known as the gutmicrobiome or our “other genome” could play an important
role in immune-related, complex diseases, and growing evidence supports a causal role for gut microbiota in
regulating predisposition to diseases. A comprehensive analysis of the human gut microbiome is thus important
to unravel the exact mechanisms by which the gut microbiota are involved in health and disease. Recent
advances in next-generation sequencing technology, alongwith the development ofmetagenomics and bioinfor-
matics tools, have provided opportunities to characterize themicrobial communities. Furthermore, studies using
germ-free animals have shed light on how the gut microbiota are involved in autoimmunity. In this review we
describe the different approaches used to characterize the human microbiome, review current knowledge
about the gut microbiome, and discuss the role of gut microbiota in immune homeostasis and autoimmunity.
Finally, we indicate how this knowledge could be used to improve human health bymanipulating the gut micro-
biota. This article is part of a Special Issue entitled: From Genome to Function.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

We are not alone. Immediately after birth, various body habitats,
such as our skin surface, oral cavity and gut, are colonized by an exten-
sive range of microbes: these are mainly bacteria, but also archaea,
fungi, viruses and protozoa. These microbial communities, also called
the human microbiota, outnumber human cells by a factor of 10. In
addition, these microbes carry 150 times as many genes as those
contained in our human genome [1,2]which constitute themicrobiome.
These micro-organisms essentially inhabit all the mucosal surfaces,
with the gastrointestinal tract (GI) and mainly the large intestine
being colonized by high densities of micro-organisms, which are collec-
tively known as gut microbiota. Under normal physiological conditions,
these microbes are commensal, mediating in digesting our food,
strengthening our immune system, and preventing pathogens from in-
vading our tissues and organs. The involvement of bacteria in digestive
functions not only benefits the human host, but microbes can also
steadily provide themselves or others with nutrient sources, thereby
producing a great variety of metabolites with a potential impact on
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human health [3]. It has been reported that other factors are also in-
volved in the microbiota composition. For example, diet influences the
activity and composition of the microbiome. A recent study showed
that increased protein intake in mice can lead to altered transcription
activation in Eggerthella lenta and thereby cause changes in metabolism
of the drugdigoxin [4]. Several other studies report on the role of dietary
factors on microbiota composition, such as a lower abundance of the
genera Bacteroides, Bifidobacterium and Enterobacteriaceae in people
on a vegan diet compared to controls on an omnivorous diet [5–9]. It
has recently been suggested that the human gut microbiota can be
divided into different enterotypes based on the abundance of specific
bacterial groups, dominated by Bacteroides, Prevotella or Ruminococcus
[10] and these enterotypes seem to be strongly associated with
long-term diets, particularly the levels of proteins and animal fat
(Bacteroides) versus carbohydrates (Prevotella) [11]. Furthermore, it
has been demonstrated that themode of delivery (vaginally or by cesar-
ean section) has a strong influence on shaping the initial gut microbiota
composition. The analysis of themeconiumof newborn infants revealed
a strong correlation between the first microbial communities of the
digestive tract and the microbial communities found in either the
mother's vagina (Lactobacillus, Prevotella or Sneathia) in the case of
vaginal delivery or the mother's skin (Staphylococcus, Corynebacterium
and Propionibacterium) in the case of delivery by cesarean section [12].
In addition, it has been recently reported that CS seems to be correlated
with decreased gut microbiota diversity, delayed Bacteroidetes
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colonisation and reduced Th1 responses [13]. The fact that metabolic
functions performed by gut bacteria resemble those of an organ but
cannot be executed by humans themselves has led to the human
microbiome being called a “forgotten” organ [14]. This mutually benefi-
cial relationship is a result of millions of years of co-evolution between
the human host and its microbes. This shared evolutionary history
has, unavoidably, led to additional inter-relationships betweenmicrobi-
al communities and their human host that extend beyond metabolic
functions. In this context, the human immune system and gut microbi-
ota interact with each other in such away that themicrobiota shape the
immune system and, vice versa, the immune system shapes the compo-
sition of the microbiota. In particular, the human immune system has
evolved in such away as to avoid the opportunistic invasion of the com-
mensal bacteria into the host tissues leading to detrimental effects on
human health [15]. More than a century ago the Russian scientist Ilya
Metchnikov, who is regarded as “the father of modern probiotics,”
suggested that themicrobial communities within the GI tract had a pro-
found influence on general human health and claimed that some of the
bacterial organisms present in the large intestine were a source of toxic
substances that contributed to illness and aging. Metchnikov observed
that the regular consumption of lactic acid bacteria in fermented dairy
products was associated with enhanced health and longevity in
Bulgarian peasant populations and he suggested that supplementing
the diet with lactic acid bacteria, an early probiotic intervention,
would have health benefits, including promoting longevity [16]. He
foresaw that any change in the composition, function and dynamics of
human microbiota could increase susceptibility to certain diseases.
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However, although the impact of the human microbiome in health
and disease has long been recognized [1], a comprehensive analysis of
human gut microbiota in terms of their genetic and metabolic potential
is still needed to unravel all the mechanisms by which the microbiome
is involved in human health and disease.

Traditional microbiology was almost entirely culture-dependent
and involved microbial species being grown in specific media
under laboratory conditions. Despite the great benefits derived from
cultivating specific, easily-grown microbial species in a vast number of
studies, other studies involving, for instance, the culture of anaerobic
bacteria, are still limited. The culturing of most gut microbes has been
unsuccessful, as “normal” gut microbiota are dominated by anaerobic
bacteria, such as members of the genus Bacteroides and of the phyla
Actinobacteria and Firmicutes. In addition, poor knowledge about the
carbon sources needed for microbial growth means the cultivation of
most of themicrobes colonizing the human gut is inefficient. Historically
(Fig. 1), the first important approach related to studying microbiota was
the establishment of germ-free mice [17]. These axenic animals are
raised in completely sterile environments and can be colonized with
specific human intestinal micro-organisms; they have been widely
used as models for human microbiome research, providing information
on how the gut microbiota are involved in health and disease. Later on,
fluorescent in situ hybridization (FISH) was the first DNA-based tech-
nique to be used without prior DNA extraction or DNA amplification
using polymerase chain reaction (PCR). In this technique, fluorescently-
labeled oligonucleotide probes are hybridized to marker genes, such as
16S rRNA, that characterize a microbial community [18]. The main
1869
Discovery of ‘nuclein’ (DNA) by Friedrich Miescher

1953
Discovery of double-helix model of DNA structure

1977
DNA sequencing:
- With chain-terminating inhibitors
- By chemical degradation

1977
First full DNA genome 
sequenced 
(bacteriophage φX174)

1977
16S rRNA selected for  
phylogenetic studies

1979
Shotgun sequencing methods

1982
Fluorescence in situ hybridization (FISH) 

1983
Polymerase chain reaction (PCR) method developed by Kary Mullis 

1986
First semi-automated DNA sequencing machine

1987
First fully automated sequencing machine 

1988
Quantitative/real-time PCR (qPCR) method developed

1990
Start of large-scale sequencing trials (NIH)

1990
Pairwise end sequencing available

1996
Pyrosequencing method developed

2000
First commercially available sequencing method

2001
Human genome unraveled

2004
Next generation sequencing (NGS) 
- Parallelized pyrosequencing (454 Life Sciences/ Roche) 
- Sequencing by synthesis (Illumina) 
- Sequencing by ligation (SOLiD)

1866
Gregor Mendel discovers inheritance in pea plant experiments

Genetics 
highlights

vances in genetics. The left-hand column shows the historical highlights in microbiome
mphasis on the analytical techniques. References are indicated as mentioned in the text,



1983M.C. Cénit et al. / Biochimica et Biophysica Acta 1842 (2014) 1981–1992
advantage of FISH is that it allows the quantitative analysis of microbial
species, although only known species can be detected simultaneously.
Fortunately, after the discovery of PCR in 1983 [19], the introduction of
DNA-based methods that were culture-independent provided new
opportunities for studying and characterizing gut microbiomes [18].
The 16S ribosomal RNA (rRNA) gene is highly conserved among all the
bacteria, but it also contains regions that are variable among bacterial
taxa. Studies based on PCR using universal and group-specific 16S
rRNA gene primers followed by electrophoreses were widely performed
for analyzing microbiomes before the introduction of sequencing. In
particular, PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of
16S rRNA sequenceswas used to obtain the banding patterns of the iden-
tified species, allowing the semi-quantitative analysis of the bacterial
species. However, only the most abundant species could be detected by
thismethod. Anothermethod, using terminal restriction fragment length
polymorphisms (T-RFLP), was based on the digestion of a mixture of
PCR-amplified variants of a single gene; it is a cost-effective method,
but not a quantitative one. Among PCR-based methods, real-time quan-
titative PCR (qPCR) is one of themost commonly used techniques, with a
high sensitivity and specificity that provides a quantitative estimation
of the amount of the PCR products; however, it can only be used to
detect known species. In 2009, a rapid, high-resolution phylogenetic
microarray-based method was developed, known as the human intesti-
nal tract chip (HITChip). In this method, a microarray platform was
developed on which oligonucleotides probes could be hybridized,
allowing the analysis of a many 16 small subunit ribosomal RNA
(SS rRNA)microbial genes. HITChip allows the simultaneous comparison
of the relative amount of over 1000 genus-like groups of gut bacteria, but
only known species can be detected [20]. Importantly, this method can
be used as a complementary method to the 16S rRNA sequencing-
based methods for gaining a better insight into human gut microbiota.

Although DNA-based, culture-independent methods contributed
to the identification of uncultured species (whose number is much
greater than the number of cultured species identified in the last
decade), the characterization of the microbial communities in a high-
throughput manner has benefited greatly from the introduction of
next-generation DNA sequencing techniques. These provide a better
quantitative picture of the microbial communities [21], even allowing
determination of species of low abundance as well as previously
unknown species.

In 2005, the International Human Microbiome Consortium (IHMC)
was foundedwith the aim of establishing a cooperative effort to analyze
the microbiome in human health and disease, with the ultimate goal of
using this knowledge to prevent and/or treat these diseases. In addition,
recent coordinated efforts, such as the Human Microbiome Project
(HMP) of the US National Institutes of Health (NIH), and the MetaHIT
project funded by the European Union, have contributed to this goal.
In 2010, Qin et al. published the first extensive catalogue of non-
redundant human intestinal microbial genes based on cohort studies
on 124 individuals of European origin and using Illumina-based
metagenomic sequencing [1]. By 2011, the Human Microbiome Project
had published the sequences of 178 bacterial species [22], but there
is still much to be done. In this review we focus on the most recent
strategies using next-generation DNA sequencing technology and
our current knowledge on the role of the gut microbiome in human
health. In particular, we describe how the gut microbiome seems to be
involved in immune homeostasis and in autoimmune diseases, both in
gastrointestinal-associated diseases as well as extra-intestinal diseases.

2. Next-generation sequencing technologies and themeta-omics era

Although DNA sequencing has been used since the 1970s [23,24], it
was long unaffordable, time-consuming and too laborious for scientists
to apply it for high-throughput studies. However, the development of
next-generation sequencing (NGS) has greatly facilitated metagenomic
studies, making them increasingly common and affordable to the
scientific community [25]. The term metagenomics is used to describe
genetic studies of unculturedmicrobial communities fromenvironmen-
tal samples, using sequence-based studies and bioinformatics tools
[26–28]. These studies aim to identify the taxonomic diversity of the
microbiota (howmany andwhichmicrobes are present in a community)
and/or to characterize the biological tasks of the members of such a
community by performing functional metagenomics.

Nowadays, the different NGS-based methods used for metagenomic
studies [29–31] are mostly performed as one of two types (Fig. 2):
(1) using specific primers for amplifying 16S rRNA genes, and (2) using
random primers for amplifying all microbial genes (whole-genome shot-
gun sequencing). In typical 16S rRNA next-generation sequencing-based
studies, DNA is extracted from a sample without the need to culture
microbes. The amplification of 16S rRNA genes is followed using specific
PCR primers, with further sequencing using NGS technologies. Subse-
quently, the 16S sequences identified are clustered into Operational
Taxonomic Units (OTUs) according to sequence similarity. Using pub-
lished databases of previously annotated sequences, a taxonomic label is
attached [32,33]. The community can be described in terms of which
OTUs are present, their relative abundance, and/or their phylogenetic re-
lationships. Furthermore, the relative abundances of genes and pathways
can be determined by comparing the sequences to functional databases
such as KEGG [34] or SEED [35]. Recently, computational approaches,
such as implemented in PICRUSt, allow us to predict the gene composi-
tion of a metagenome using 16S rRNA gene data and a database of refer-
ence genomes [36]. It is important to note that this 16S rRNA NGS-based
method iswidely used formicrobiome studies, but it is limited to bacteria,
as parasites and viruses do not have 16S rRNA genes. The first 16S rRNA
metagenomic study of healthy, human, distal gut microbiota dates back
to 2006, when Gill et al. analyzed the DNA sequences obtained from
fecal samples of two healthy adults using 16S rRNA sequence-based
methods [37]. They reported that the human microbiome plays a signifi-
cant role inmetabolic pathways, such as the processing of glycans, amino
acids and xenobiotics, methanogenesis, and the 2-methyl-D-erythritol 4-
phosphate pathway-mediated biosynthesis of vitamins and isoprenoids.
These results imply that humans are super-organisms,whosemetabolism
depends on the presence of a large number of micro-organisms that are
found in the human host [37]. The first microbiome study that showed
an association of the human gut microbiome to a disease was done on
obese and lean adults – monozygotic and dizygotic twin pairs – using
16S rRNA-based methods. This showed that obesity was linked with
changes in the microbiota: specifically that obese individuals were seen
to have reduced bacterial diversity and a differential bacterial gene
expression profile compared with lean individuals [38]. The microbiota
of intestinal biopsies and stool samples from inflammatory bowel disease
(IBD) patientswas analyzed by 16S gene sequencing and followed up in a
subset of samples using shotgun metagenomics. This revealed major
shifts in oxidative stress pathways, as well as decreased carbohydrate
metabolism and amino acid biosynthesis in favor of nutrient transport
and uptake [39]. Another study also combined 16S gene sequencing and
shotgun metagenomics to analyze the microbiome in patients with
arthritis and it was observed that the expansion of intestinal Prevotella
copri correlates with enhanced susceptibility to arthritis [40].

As an alternative to 16S sequencing, in whole-genome shotgun se-
quencing the DNA is first extracted, amplified using random primers,
subcloned, and then sequenced to produce a representative DNA library
of the microbial and viral populations being studied. After sequencing,
the enormous numbers of reads obtained can be analyzed to identify
the species represented by the sequences and the community's func-
tional capabilities, using databases such as KEGG [34] or SEED [35]. For
example, a metagenome-wide association study (MGWAS) based on
deep shotgun sequencing of gut microbial DNA showed that patients
with type 2 diabetes were characterized by a moderate degree of gut
microbial dysbiosis, a decrease in the abundance of some universal
butyrate-producing bacteria, an increase in various opportunistic path-
ogens, as well as an enrichment of other microbial functions conferring



Fig. 2.Different NGSmethods for metagenomic studies. First, DNA is extracted from a samplewithout prior culturing. The 16S rRNA gene-based approach is performed by amplification of
16S rRNA gene using specific PCR primers. Thewhole-genome shotgun sequencing is based on the amplification of all microbial genes using random primers. Both these high-throughput
methods are used to characterize the taxonomic diversity in detail, including describing known and unknown taxa, and the functional composition of the microbial community. The 16S
rRNA NGS-based method is extensively used for microbiome studies, but is widely limited by primer design, while the shotgun sequencing method is used to describe all the microbes
present within the community.
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sulphate reduction and oxidative stress resistance [41]. Recently, a new
model has been developed, based on shotgunmetagenomic sequencing,
to distinguish between patients with type 2 diabetes and healthy
women. This model has better predictive value than the classical predic-
tive markers used at the moment, such as body mass index and
waist–hip ratio [42]. Another study has showed that individuals with
a low bacterial richness are characterized by more marked overall
adiposity, insulin resistance and dyslipidemia, and a more pronounced
inflammatory phenotype compared with individuals with a highly rich
bacteria [43]. Furthermore, it has been suggested that alteration in the
gut metagenome is associated with the inflammatory status of the host
and that patients with symptomatic atherosclerosis harbor characteristic
changes in their gut metagenome [44].

As well as investigation of bacteria, the metagenomic approach
allows the virome and mycobiome composition of the human gut to
be identified. The first results of virome and mycobiome studies have
indicated a wide range of mycobacteria and viruses in the mouse and
human gut, that compositional changes are diet-dependent, and that
the mycobacteria and viruses play a role in predisposition to diseases
[45–49].

It is worth mentioning that other meta-omic approaches along with
(functional) metagenomics need to be used as complementary ways
to obtain a comprehensive picture of the role of the humanmicrobiome
in health and disease and to investigate whether changes in the
microbiome are the cause or the consequence of a disease [50]. Meta-
transcriptomics aims to sequence microbial mRNAs to investigate
which genes (and towhat extent) are expressed in amicrobial commu-
nity, revealing fluctuating expression profiles depending on micro-
environmental conditions. Remarkably, meta-transcriptomic analysis
of microbiomes using fecal samples from healthy individuals showed
that highly expressed genes were involved in the metabolism of carbo-
hydrates, energy production, and the synthesis of cellular components
[51]. Meta-proteomics aims to identify, quantify and define the poten-
tial role of the microbial proteins. A meta-proteomic study of two
healthy individuals showed that microbial proteins that are involved
in post-translational modifications, protein folding and turnover were
overproduced in contrast to proteins involved in inorganic ion metabo-
lism, cell wall biogenesis and membrane biosynthesis [52]. Last but not
least, the study of metabolomics aims to identify and quantify all the
small-molecule, microbial-producedmetabolites under specific physio-
logical and micro-environmental conditions, in order to unravel the
dynamic nature of the metabolic function of a microbial community
and understand how it influences its human host. For instance, such
studies have looked at fecal samples from healthy individuals, and
patients with IBD (i.e. Crohn's disease (CD) or ulcerative colitis (UC))
and found reduced levels of butyrate, acetate, but also of methylamine
and trimethylamine, and an elevated level of amino acids in IBDpatients
compared to healthy people [53]. Although all these approaches are still
in their infancy, their potential usefulness in investigating the gut
microbiome in a wider context and its relationship with the human
host is clear.

3. The role of human gut microbiota in immune homeostasis
and autoimmunity

Throughout evolution, the human host and its microbes have devel-
oped further complex inter-relationships, in which microbes regulate
the normal development and function of the mucosal immune system
[54,55]. This inter-relationship ensures that the host's immune system
does not attack themicrobes found in and on the human host, resulting
in the establishment of an immune homeostasis. However, themicrobi-
ota protect the host from infection by direct and indirect mechanisms
[56]: they mainly increase the epithelial barrier function through the
production of different metabolites, such as short-chain fatty acids
(SCFAs) [57] and the presence of mucus [58], or by promoting the
production of antimicrobial molecules such as REGIIIγ and REGIIIβ by
epithelial cells in the small and large intestines [59]. The immune sys-
tem plays a vital role in protecting humans from invading pathogens
and in maintaining their self-tolerance. However, in the case of autoim-
mune diseases, the immune system fails to properly distinguish self-
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tissue and non-self tissue, and it attacks part of its own cells [60,61].
Given that humans can be considered as super-organisms colonized
by many micro-organisms, the theory of the recognition of self-tissue
by the human immune system should also include the recognition of
humanmicrobiota [62]. Thus, it could be speculated that the host's mu-
cosal immune system has developed a tolerance or non-responsiveness
to bacteria colonizing the human mucosal surfaces, leading to a benefi-
cial symbiosis between the human host and the micro-organisms. The
human gut microbiota regulate the immune homeostasis but their
regulative role is not limited to just the local intestinal immune system
but also influences the host's systemic immune responses.

Advances in NGS technologies have facilitated the characterization
of gutmicrobiota and provided evidence that alterations of thesemicro-
bial communities can cause immune dysregulation, leading to autoim-
mune diseases. Along with these technologies, the use of germ-free
animals seems to offer a powerful approach for investigating the role
of the gut microbiota in regulating the immune system [63]. These
animals have been raised in completely sterile environments and have
thus never been exposed to any micro-organisms, so they can be
colonized with human intestinal micro-organisms and be used as
models for studying the human microbiome.

3.1. Gut microbiota and innate immune homeostasis

An interesting mechanism has been proposed to contribute to the
innate immune homeostasis: when the intestinal macrophages derived
from bloodmonocytes are recruited to intestinal mucosa, they acquire a
unique phenotype, which is called “inflammation anergy” [64,65].
Surprisingly, previous studies showed that intestinal macrophages
lack the key receptor CD14 involved in the recognition of bacterial
lipopolysaccharides (LPS) and LPS-binding proteins [66,67], with mac-
rophages found in the colon expressing low levels of CD14 [68,69]. In
contrast to bloodmonocytes, intestinal macrophages were found to ex-
press reduced levels of other innate response receptors, including Fcα
(CD89), Fcγ (CD64, CD32, CD16),CR3 (CD11b/CD18), and CR4 (CD11c/
CD18); the growth factor receptors IL-2 (CD25) and IL-3 (CD123); the
integrin LFA-1(CD11a/CD18), and, lastly, pro-inflammatory cytokines
were found to be downregulated, such as IL-1, IL-6, IL-12, RANTES,
TNF-β and TNF-α, in response to inflammatory triggers. Hence, it is
evident that intestinal macrophages are significantly distinct in pheno-
type and function from blood monocytes, promoting an absence of in-
flammatory response despite the presence of immunostimulatory
bacteria. In addition, toll-like receptors (TLRs) induce an inflammatory
response that must be strongly regulated to avoid tissue damage and
many negative regulators of TLRs have been identified. Once TLR and
ligand interaction has occurred, TLR signaling can be further controlled
by intracellular regulators, which can inhibit TLR signaling pathways.
Some of the intracellular regulators are even present constitutively to
control TLR activation at a physiological level [70]. Even when the
immune response is activated, despite of all the aforementioned forms
involved in its regulation, production of anti-inflammatory cytokines
could further control the inflammatory response.

Further evidence on the regulation of APCs by the gut microbiota
was provided by studies using germ-free animals. In these studies,
intestinal DCswere found in lower levels, while an increase in their num-
ber was observed when the animals were colonized with Escherichia coli
[71,72]. Additional studies found that macrophages of germ-free mice
lacked major macrophage functions, such as phagocytosis, chemotactic
and microbicidal activities [73,74], and also the cell surface molecules
thatmediate interactionswith leucocytes, such asmajor histocompatibil-
ity complex class II [75].

Another essential part of the innate immune system, the neutrophils
with phagocytic activity, has been shown to be influenced by gut
microbiota. For instance, experiments using germ-free rats revealed
that these rats are neutropenic [76]. In addition, circulating peripheral
blood neutrophils in germ-free rats have been found with decreased
phagocytic activity and subsequently they could not release superoxide
anions as a result of a phagocytic event. The release of superoxide anions
could not even be restored when the germ-free rats were transferred
back to the initial environment [77]. In addition, innate lymphoid cells
(ILCs) are a group of innate immune cells that belong to the lymphoid
lineage; they produce many Th cell-associated cytokines, but do not
respond in an antigen-specificmanner. This group of cells has an impor-
tant role in regulating homeostasis and inflammation [78]. There is
increasing evidence for the important role played by group 3 (RORγt)
ILCs in intestinal immunity. These ILCs resemble Th17 cells in their
cytokine profile (production of IL-22 and/or IL-17 upon IL-23 and
IL-1b stimulation), inducing increased anti-apoptotic signals as well as
the production of antibacterial peptides by epithelial cells [79,80]
important in maintaining mucosal homeostasis. Within the ILCs group
3 there is a second type of NK cells in the gut mucosa that differ from
the classical NK cellswith respect to two features: [81]: (1) they showed
a limited production of INFγ and no production of perforin, whereas
they did produce interleukin-22, which promoted the production of
antimicrobial molecules; and (2) they expressed the NK-cell natural
cytotoxicity receptor NKp46 as the classical NK cells, but they also
express the nuclear hormone receptor retinoic acid receptor-related or-
phan receptor gamma t (RORγt). It is interesting to note that germ-free
mice lacked this second type of IL-22+NKp46+ cells, suggesting that
the gut microbiota play a critical role in differentiating this type of NK
cell in the gut mucosa [82]. Recently, it has been described that
microbiota-driven IL-1β production by macrophages stimulated the
release of Csf2 by ILC3, which in turn promote DCs and macrophages
to maintain colonic Treg homeostasis [83].

Last but not least, the intestinal epithelial cells (IECs) constitute the
first physical barrier preventing commensals and potential pathogens
inhabiting the intestinal lumen from invading the underlying tissue.
These cells also produce some antimicrobial peptides, cytokines
and chemokines to protect tissue from the invasion of microbes by
modulating the immune system. Importantly, it has been suggested
that the proliferation of IECs and the production of antimicrobial pep-
tides are influenced by the gut microbiota. Specifically, in germ-free
mice treated with broad-spectrum antimicrobials, the IECs showed
a reduced proliferation and also a lower production of antimicrobial
peptides [84,85].

Taking into account all the above data, we can support that the
gut microbiota influence several essential parts of the innate immune
system and, specifically, the intestinal immune system.

3.2. Gut microbiota and adaptive immune homeostasis

CD4+ T cells are the key components of the adaptive immune
system that play critical roles in determining an individual's health
status. They are classified into four major subpopulations depending
on the production of cytokines: T helper 1 (Th1), Th2, Th17, or
regulatory T cells (Treg). The Treg cells are further classified into two
subpopulations: CD4+FOXP3+ Treg cells or CD4+FOXP3− IL−10+
Treg cells [86]. The pro- and anti-inflammatory T cell-mediated
responses must be balanced to ensure the individual's immune homeo-
stasis and subsequent health.

Certain microbial species have been associated with the initiation of
specific T cell responses. For instance, members of the Gram-negative
bacterium Bacteroides fragilis induce the differentiation of naive CD4+
T cells into Treg cells through interactions with the polysaccharide A
(PSA) molecules located on the outer membrane of the bacteria and
resulting in an anti-inflammatory immune response, not only locally
in the intestinal mucosa, but also in the systemic circulation [87].
Furthermore, 46 Clostridia spp. belonging to clusters IV and XIVa, were
associated with the differentiation of CD4+ T cells into IL-10 producing
Treg cells in the intestinal mucosawhen germ-freemicewere colonized
with this bacterial mixture [88]. Segmented filamentous bacteria (SFB),
which inhabit the small intestine of mice, have been associated with a
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pro-inflammatory response by inducing the differentiation of naive
CD4+ T cells into Th17 cells and, to a lesser extent, into Th1 cells
[88,89]. Remarkably, when germ-free mice were colonized with SFB,
they became susceptible to Th17 cell-mediated arthritis and experimen-
tal autoimmune encephalomyelitis [90,91], suggesting that changes in
specific bacterial species in the gutmicrobiota can enhance susceptibility
to certain autoimmune diseases.

Although there is growing evidence that the gut microbiota
regulates the innate and adaptive immune responses and that certain
species elicit specific responses, the precise underlying mechanisms
are still unclear. Nonetheless, the investigation into how gut microbiota
are involved in immune homeostasis and how a perturbation of this
homeostasis can lead to autoimmune diseases is of great importance
in developing alternative strategies to treat or prevent many chronic
diseases.

4. Gut microbiota and autoimmune and inflammatory diseases

Given that the gut microbiota modulate the innate and adaptive
immune systems locally in the intestinal mucosa and also systemically
outside the gut, it is not surprising that microbial species have been
associated with certain autoimmune and inflammatory diseases and
that changes in the gut microbiome can contribute to an increased
susceptibility to diseases bothwithin and outside the gut. In this section,
we discuss the role of gut microbiota in gastrointestinal (GI) and
extra-intestinal autoimmune and inflammatory diseases.

4.1. Gut microbiota and GI-associated autoimmune and inflammatory
diseases

Inflammatory bowel disease (IBD) consists of several inflammatory
conditions of the colon and small intestine, with Crohn's disease (CD)
and ulcerative colitis (UC) being the major types. The main difference
between these two types is that the inflammation in CD can affect any
part of the gastrointestinal tract, whereas in the UC it is limited to the
colon. There is genetic evidence showing that the impaired recognition
and killing of commensal bacteria contributes to IBD development:
many of the IBD-susceptibility genes that have been identified regulate
host–microbial interactions (Fig. 3), [92,93]. For instance, NOD2, which
is an intracellular sensor of bacterial peptidoglycan, was identified as a
susceptibility gene for Crohn's disease, and Crohn's disease-associated
NOD2 mutations are associated with a loss-of-function of the protein
[94–96]. NOD2 is highly expressed in Paneth cells and regulates their
function, which is to release granules containing antimicrobial peptides
in response to bacteria [97]. Individuals carrying the rs41450053
(SNP13) variant in NOD2 have shown lower levels of α-defensins,
which are normally expressed by Paneth cells, compared to wild-type
NOD2 or other NOD2-mutant genotypes [98]. Specifically, this mutation
has been associated with CD of the ileum, where Paneth cells are abun-
dant [99]. Nod2-deficient mice displayed a diminished ability to kill
bacteria as well as increased loads of commensal bacteria, demonstrating
that NOD2 is essential for developing intestinal microbial communites
[100]. It has also been reported that dysbiosis caused by Nod2 deficiency
inmice seems to be a risk factor for colitis [101]. Later, it was demonstrat-
ed that NOD2 genotypes also affect themicrobial composition in humans
[102]. Furthermore, individuals homozygous for loss-of-function muta-
tions for the FUT2 gene, which encodes an α-1,2-fucosyltransferase that
regulates expression of ABOhisto-blood group antigens on the GImucosa
and in body fluids, showed a “nonsecretor” phenotype and, interestingly,
an increased susceptibility to CD [103]. A recent study described
how the FUT2 genotype seems to explain substantial differences inmicro-
biota composition and how nonsecretor individuals exhibit an altered
mucosa-associated microbiota. These likely lead to an increased risk to
CD, indicating that host genetic factors may influence the composition
of gut microbiota [104]. It has also been recently reported that the
rare G allele of the rs11747270 polymorphism, which is located
within the IRGM gene (involved in autophagy and with a potential
role in microbiota homeostasis), shows a significant correlation with a
Prevotella-predominant enterotype [105]. With all the evidence
described above, it is now clear that different genetic factors seem to
influence host–microbial diversity [92] and it is therefore important to
take interactions between genetics and microbiota into account when
studying the role of the microbiome in diseases.

Typically, IBD patients show an overall decreased diversity of gut
bacteria and, specifically, a reduction in the members of the dominant
Firmicutes and Bacteroidetes compared to healthy people [106,107].
In colonic CD patients, increased levels of Firmicutes, Actinobacteria
and Terenicutes were found compared to healthy individuals, whereas
in ileal CD patients fewer Firmicutes and more Proteobacteria and
Fusobacteria were found [107]. Additional studies have shown an in-
crease in the Lachnospiraceae family in ileal CD patients [108,104]. Inter-
estingly, ileal and colonic CD patients showed contrasting microbial
profiles and some bacterial commensals were absent in ileal CD
patients. Moreover, a greater relative abundance of proteobacteria,
which include common enteric pathogens such as the family of
Enterobacteriaceae [109] and a reduction in beneficial microbes, such
as those producing butyrate, with Faecalibacterium prausnitzii being
the main producer, have been observed in IBD patients [110,111]. In
a recent study, Gevers et al. studied samples from new-onset cases
of IBD collected prior to treatment from multiple gastrointestinal
locations. They reported that an increased abundance in certain bacteria
(including Enterobacteriaceae, Pasteurellacaea, Veillonellaceae and
Fusobacteriaceae) and a decrease in Erysipelotrichales, Bacteroidales and
Clostridiales correlated strongly with disease status, suggesting that
the rectal mucosal-associated microbiome analysis offers a unique
opportunity for the early diagnosis of CD [112]. However, it should be
noted that the mucosal tissue samples in which increased levels of
aerobic and facultative anaerobes (e.g. Proteobacteria) were dominant,
did not reflect the gutmicrobial dysbiosis in the sameway as stool sam-
ples, in which obligate anaerobes (e.g. Bacteroides and Clostridiales)
were found to be prevalent [112].Last but not least, an overall increase
in fungal diversity in UC and CD has been reported, but more studies
are needed to shed light on the relationship between these organisms
and IBD [108].

4.2. Gut microbiota and extra-intestinal diseases

4.2.1. Gut microbiota and rheumatoid arthritis
Rheumatoid arthritis (RA) is an autoimmune disease that is charac-

terized by chronic systemic inflammation, which may affect many
tissues and organs but principally affects the joints. Previous studies
have suggested that both genetic and environmental factors influence
the etiopathogenesis of RA. However, studies on monozygotic twins
have shown that environmental factors strongly influence the develop-
ment of RA, as the concordance rate of RA has been estimated to be 15%,
comparedwith a higher rate of 50% in type 1 diabetes [113,114]. Thus, it
has been suggested that the gut microbiota play a significant role in the
pathogenesis of RA, among other environmental factors [115,116].
Recent studies using 16S rRNA-based methods described a different
composition of fecal bacteria in patientswith recent onset RA compared
to control individuals with fibromyalgia [117]. A reduction in the
Bifidobacterium, Bacteriodes–Porphyromonas–Prevotella, Bacteroides
fragilis subgroups and Eubacterium rectal–Clostridium coccoides group
was observed in the guts of RA patients compared to the control
group. Recently, a marked over­representation of Prevotella species, in
particular P. copri, has been observed in patients with new­onset rheu-
matoid arthritis and a potential role for P. copri in the susceptibility to
arthritis has been suggested [40]. Wu et al. used K/BxN mice as a
model for arthritis and proposed a mechanistic model to explain how
gut microbiota could be associated with the extra-intestinal disease of
RA by alteration of the systemic immune system [91]. According to
their proposed model (Fig. 3), the colonization of mouse gut with SFB
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1987M.C. Cénit et al. / Biochimica et Biophysica Acta 1842 (2014) 1981–1992
induces the differentiation of CD4+ cells into Th17 cells. Subsequently,
Th17 cells migrate into the peripheral lymphoid tissue and produce IL-
17. IL-17 acts directly on the germinal center B cells in spleen leading
to differentiation of the B cells, which subsequently produce auto-
antibodies. The auto-antibodies could then be directed against target
joints, ultimately leading to the development of RA.

4.2.2. Gut microbiota and type 1 diabetes
Type 1 diabetes (T1D) is an autoimmune disease that results from

the destruction of insulin-producing beta cells of the pancreas from
T-cells. Studies using a non-obese, diabetic (NOD) mouse model
for human T1D could not observe any amelioration of the disease phe-
notype when mice were raised in pathogen-free conditions, which
was observed for the mouse models used to study the autoimmune
and inflammatory diseases mentioned above. NOD mice showed
a higher incidence of T1D in germ-free conditions compared with
specific-pathogen free (SPF) mice housed in the same conditions [118].
This observation was in agreement with the fact that T1D has a
higher incidence in countries with stringent hygiene practices [119].
However, inconsistent with the previous studies, germ-free NOD mice
deficient for MyD88 protein (an adaptor protein for multiple innate
immune receptors that recognize microbial antigens) showed an
amelioration of the disease phenotype when hosted in an SPF environ-
ment, implying that the gut microbiota might protect against the
disease [118]. This protective effect in MyD88-deficient mice can be ex-
plained by the growth of beneficial bacteria, which would otherwise
have been under the control of MyD88. These findings indicate that
the interaction of the gut microbiota with the innate immune system
via the MyD88-signalling pathway has a critical role in the progression
of diabetes (Fig. 3). Moreover, germ-free NOD mice, when colonized
with the gut microbiota of SPF NOD mice deficient for MyD88, showed
an amelioration of diabetes. In addition, a significant increase of
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three bacterial families was observed in MyD88-deficient NOD mice
compared to SPF NOD animals using 16S rRNA-based methods [118].
These families include the Lactobacillaceae (Firmicutes), Rikenelleceae
and Porphyromonadaceae (both Bacteroidetes), suggesting that these
members of the gut microbiota have an immuno-regulative role in
diabetes.

4.2.3. Gut microbiota and experimental autoimmune encephalomyelitis
(EAE)

Multiple sclerosis (MS) is a demyelinating neurodegenerative
autoimmune disease that affects the central nervous system (CNS).
Several studies have provided evidence that the gut microbiota plays a
role in experimental autoimmune encephalomyelitis (EAE), which
is the murine model for human multiple sclerosis. One interesting
observation was that antibiotic treatment may alleviate the disease
severity, implying that alterations in the gut microbiota can influence
susceptibility to MS [120]. Furthermore, germ-free mice induced for
EAE showed an amelioration of the disease phenotype, which is in
agreement with the reduced secretion of pro-inflammatory cytokines
observed, such as IL-17. In contrast, when these mice were colonized
with SFB, they showed an enhanced disease phenotype, whichwas con-
sistent with an increase of Th17 cells in the CNS (Fig. 3) [90]. Remark-
ably, it has been suggested that a specific regulatory B cell population
induced by altering the gut microbiota could be involved in regulating
autoimmunity, by shifting the immune esponses from Th1/Th17
towards anti-inflammatory Th2-type responses, and thereby leading
to a reduced susceptibility to EAE [121].

4.2.4. Gut microbiota and obesity
Different changes in the gut microbiota composition as well as a

reduced bacterial diversity have been associated with obesity by
human and mice studies. An enrichment of Firmicutes and a decrease
in Bacteroidetes levels has been reported in obese individuals compared
to lean individuals. This was found both in humans [122] and in mice
genetically predisposed to obesity [123]. Interestingly, the Firmicutes/
Bacteroidetes ratio was normalized to that observed in lean individuals
after weight loss [122]. More recently, Kalliomäki et al. have showed
that early differences in gut microbiota composition in children, higher
levels of Staphylococcus aureus, and lower levels of Bifidobacteria may
predict overweight [124]. So far, different studies have been performed
to investigate whether the altered gut microbiota contribute to obesity
or whether obesity alters the gut microbiota. These studies have sug-
gested a causal relationship between changes in microbiota composi-
tion and obesity development, showing that the obese phenotype can
be transferred by the microbiota and also that the obese microbiome
has an increased capacity to harvest energy from the diet [125,126].
Analysis of the metagenome of twins concordant for obesity showed
altered representation of bacterial genes and metabolic pathways in
obese individuals, who harbored more genes for phosphotransferase
systems involved in carbohydrate processing [38]. It has been demon-
strated that prevention of obesity by the microbiota in mice was diet-
dependent, pointing to the connection between gut microbes and diet
as a key factor in the path to obesity [127]. It is remarkable to note
that the intestinal microbiota metabolism may also contribute directly
to other phenotypes associated with obesity, such as CVD risk [128],
while inflammasome-mediated microbiota dysbiosis also seems to
exacerbate more processes associated with the metabolic syndrome,
such as obesity and non-alcoholic fatty liver disease (NAFLD) [129].

4.2.5. Gut microbiota and immunodeficiencies
Last but not least, it is important to highlight that although only a

few studies on the microbiome in patients with immunodeficiencies
have been performed, thisfieldwill likely develop strongly in the future.
Patients with chronic mucocutaneous candidiasis (CMC) and hyper IgE
syndrome (HIES) have an increased risk for skin andmucosal infections
with fungal pathogens, mainly Candida albicans and Staphylococcus
aureus. Recently, it has been reported that the microbiota composition
in these patients shows dysbiosis, with an increase of gram negative
bacteria, especially Acinetobacter spp, and a decrease of Corynebacterium
spp compared with healthy individuals [130]. The increased bacteria
(Acinetobacter spp) showed suppression of the cytokine response to
C. albicans and S. aureus, both of which are involved in the most
prevalent infections developed by patients with the above primary im-
munodeficiencies. Furthermore, HIV infection is associated with highly
characteristic changes in the gut community, including increased diver-
sity, which are not restored to an HIV-negative state during antiretrovi-
ral therapy [131]. It has been suggested that fecal transplantation could
be used to treat Clostridium difficile infection in patients with HIV [132].
5. Cause or consequence of disease development?

Despite all the studies performed so far, it is still unclearwhether the
changes in the microbiome are a cause or a consequence of disease
development. However, there is growing evidence, provided by both
human fecal microbiota transplantation and germ-free mice studies,
to support a causal role for gut microbiota in regulating diseases. The
use of animalmodels, inwhich the intestinal flora can bewidelymanip-
ulated, provides a powerful tool for suchmechanistic studies. For exam-
ple, a recent study in a non-obese, diabetic (NOD) mouse model of
type 1 diabetes indicated that the commensal microbial community
affects the course of autoimmune disease by altering the levels of sex
hormones [133]. NOD female mice are significantly more susceptible
to disease than males, although this difference is not apparent under
germ-free conditions. This study showed that fecal transplantation
from male NOD mice to females was associated with increased testos-
terone in the female mice and protection against the development of
diabetes [133]. Another study showed that obesity-related metabolic
abnormalities observed in mice genetically deficient in Toll-like recep-
tor 5 (TLR5) correlated with changes in the composition of the gut
microbiota. Transfer of gut microbiota from TLR5-deficient mice to
wild-type germ-free mice conferred many of those features associated
with obesity to the recipients [134]. Similarly, TLR2 genetically deficient
mice are protected from high-fat-induced insulin resistance and this
feature can be reproduced in wild-typemice bymicrobiota transplanta-
tion from TLR2-deficient mice and reversed by antibiotics [135].
Another remarkable observation in EAE was that treatment with a
broad-spectrum antibiotic may alleviate the disease severity, implying
that alterations in gut microbiota induced by antibiotics can influence
the susceptibility to autoimmune demyelinating processes of the cen-
tral nervous system (CNS) [120]. Another study in an animal model of
ulcerative colitis, the T-bet−/− x Rag2−/− ulcerative colitis (TRUC)
knockout mice, showed that the transfer of the microbiota from TRUC
mice to wild-type mice resulted in colitis in them [136]. Similar to
TRUC mice, colitis could be also induced in wild-type mice when the
gutmicrobiota of NLRP−/−micewas transferred to them [137]. Impor-
tantly, both animal studies have shown that there is an overgrowth of
certain colitis-associated bacterial species in mice with colitis, and that
these can cause disease in wild-type mice that do not have a predispo-
sition to the disease. The fact that certain antibiotics (i.e. sulfazalazine
and minocycline) seem to alleviate the symptoms of some RA patients
has provided clues that bacteria may play an important role in RA
[138]. Animal studies using the IL-1 receptor antagonist deficient
(IL-1Rn−/−) mouse model for arthritis have indicated a pathological
role for the gut microbiota in RA as germ-free IL-1Rn−/− mice did
not develop disease, whereas when germ-free IL-1Rn−/− mice were
colonized with Lactobacillus bifidus they did develop RA [139]. In
addition, fecal microbiota transplantation in humans has shown suc-
cessful results in treating several conditions [140,141].Thus, taking all
these considerations into account, it is possible that certain disease-
associated gut microbial species could be the cause of a disease rather
than a result of it.
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6. Conclusions and future perspectives

The role of the microbiome in its entirety in health and disease has
emerged as an area of major scientific and clinical importance in the
past 10 years. It is now evident that changes in gut microbiota have a
profound effect on the human immune system, which can affect the
development of autoimmune and inflammatory diseases both within
and outside the gut. Despite the incredible complexity of the microbial
communities in the gut, advancements in next-generation sequencing,
in parallel with improved bioinformatic tools, have provided new
opportunities to characterize human gut microbiota without needing
to perform cultures. In addition, the use of animal models for human
autoimmune diseases, in which the intestinal microbiota can bemanip-
ulated (such as in the germ-free animals), as well as human studies of
fecal microbiota transplantation, have provided further insights into
how themicrobiota are involved in the development of certain diseases.
It is important to understand the exact relationship between the gut
microbiota and the human immune system in order to find new oppor-
tunities to prevent and treat certain diseases. Recent evidence strongly
suggests that, in the near future, wewill be able to use individualmicro-
biota profiles in clinical practice as a biomarker for patients' gut health,
in order to predict who is at risk of developing certain diseases [142].
The recent success story of fecal transplantation in a patient suffering
from Clostridium difficile-associated diarrhea has opened up a promising
new future for treating such patients by restoring their intestinal
microbial balance [143] and the potential of fecal microbiota transplan-
tation therapy is now being explored in other conditions. It is therefore
important to understand how the gut microbiota shape the human
immune system, as well as how the immune system shapes the gut
microbiota – thiswill be possible by combining functionalmetagenomic
studies with others omics approaches. Ultimately, this knowledge
should provide exciting new opportunities for improving human
health: specifically for preventing and treating autoimmune diseases
bymanipulating the human gut microbiota to restore a healthy balance
in the gut's microbial communities.
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