
Oocyte maturation remains an enigmatic process that is
generally understood to span the time from when messages
initiate germinal vesicle breakdown (GVBD) to completion
of the nuclear changes resulting in expulsion of the first
polar body. The process of maturation encompasses a
complex series of molecular and structural events, culmi-
nating in the arrest of the oocyte chromosomes on the
metaphase II plate in anticipation of sperm penetration
and activation for fertilization. There is no agreed assay for
the completion of oocyte maturation, other than the full
developmental competence of the fertilized oocyte to fully
formed live born offspring. Completion of the nuclear
changes to produce a metaphase II oocyte does not iden-
tify developmental competence and does not reflect the
molecular and structural maturity of an oocyte, which is
sometimes termed cytoplasmic maturation. It is well

known that oocytes will progress spontaneously through
the nuclear changes characteristic of oocyte maturation
when they are liberated from the antral follicle and cultured
in vitro (Pincus and Enzmann, 1935; Edwards, 1965).
GVBD may be observed in oocytes in advanced stages of
follicular atresia when follicular support cells have died.
Hence progression of meiosis to metaphase I or II could be
representative of either oocyte degeneration or oocyte
maturation. Studies in the mid-1970s by Thibault et al.
(1975) and Moor and Trounson (1977) showed that, in
species such as rabbits and sheep that have an obligatory
phase of protein synthesis during maturation, a complete
follicle was necessary to mature oocytes fully. By main-
taining the primary elements of follicular culture and 
retaining granulosa cell viability and function, Staigmiller
and Moor (1984) were able to retain maturation and 
developmental competence of sheep oocyte–cumulus cell
complexes in culture when they were removed from the
follicular environment.
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Complete maturation of oocytes is essential for the developmental competence of 
embryos. Any interventions in the growth phase of the oocyte and the follicle in the
ovary will affect oocyte maturation, fertilization and subsequent embryo development.
Oocyte size is associated with maturation and embryo development in most species ex-
amined and this may indicate that a certain size is necessary to initiate the molecular
cascade of normal nuclear and cytoplasmic maturation. The minimum size of follicle re-
quired for developmental competence in humans is 5−7 mm in diameter. Maturation in
vitro can be accomplished in humans, but is associated with a loss of developmental
competence unless the oocyte is near completion of its preovulatory growth phase. This
loss of developmental competence is associated with the absence of specific proteins in
oocytes cultured to metaphase II in vitro. The composition of culture medium used suc-
cessfully for maturation of human oocytes is surprisingly similar to that originally devel-
oped for maturation of oocytes in follicle culture in vitro. The presence of follicle
support cells in culture is necessary for the gonadotrophin-mediated response required
to mature oocytes in vitro. Gonadotrophin concentration and the sequence of FSH and
FSH−LH exposure may be important for human oocytes, particularly those not exposed
to the gonadotrophin surge in vivo. More research is needed to describe the molecular
and cellular events, the presence of checkpoints and the role of gene expression, trans-
lation and protein uptake on completing oocyte maturation in vitro and in vivo. In the
meantime, there are very clear applications for maturing oocytes in human reproductive
medicine and the success rates achieved in some of these special applications are clini-
cally valuable.
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Follicular size, oocyte maturation and
developmental competence

Follicular development in monovular species is character-
ized by recruitment of primordial follicles for an extended
period of follicular growth, selection of a dominant follicle
destined for ovulation, and atresia of the remaining cohort.
Follicle development is a continuum that begins at birth
and continues to the end of reproductive life. The human
oocyte grows from a diameter of 35 mm to a final diameter
of 120 mm over several months (Gosden and Bownes,
1995; Gougeon, 1996). During this period the oocyte 
synthesizes and stores mRNA and proteins essential for the
completion of maturation and for the subsequent acquisi-
tion of embryo developmental competence and ongoing
viability. In humans, during the late luteal phase of the
preceding menstrual cycle, the largest non-atretic follicles
range in size between 2 and 5 mm in diameter (Gougeon
and Lefevre, 1983; McNatty et al., 1983). In the early 
follicular phase, the largest follicle ranges in size from 5.5
to 8.2 mm and this is usually the follicle that achieves
dominance and continues growth to ovulation (Gougeon
and Lefevre, 1983). The preovulatory follicle develops to a
diameter of 18.8 6 0.5 mm by the late follicular phase
(Gougeon and Lefevre, 1983) and expands rapidly after
the mid-cycle LH surge to a diameter of > 25 mm.

Antrum formation in the rodent follicle occurs at about
the time oocytes complete their growth and the oocyte has
acquired the capacity to resume meiosis (Eppig and
Schroeder, 1989). In mice, a polyovular species, oocytes
from early antral follicles are competent to resume the first
meiotic division (Sorensen and Wassarman, 1976) and
when isolated from the follicle undergo spontaneous 
resumption of meiosis. However, competence of oocytes
to complete maturation beyond the first meiotic division is
not conferred in mice until the follicle is much larger
(Eppig and Schroeder, 1989). Developmental competence,
as shown by the ability to undergo fertilization and 
develop to the blastocyst stage, is dependent on both the
size of the follicle and the size of the oocyte (Eppig et al.,
1992). 

The capacity for meiotic competence in rabbits (Bae
and Foote, 1975), cows (Sato et al., 1977), pigs (Tsafiri and
Channing, 1975), sheep (Moor and Trounson, 1977), goats
(Martino et al., 1994), horses (Goudet et al., 1997) and
rhesus monkeys (Schramm et al., 1993) increases with 
follicle size and is not strictly correlated with antrum 
formation or maximum oocyte diameter, which occurs
later. Marmoset monkeys are similar to mice in that meiotic
competence occurs concomitantly with antrum formation
(Adachi et al., 1982; Gilchrist et al., 1995). However, 
follicular antrum formation occurs at different stages of 
folliculogenesis in different species. Antrum formation oc-
curs in human and bovine follicles at 2% of the final ovu-
latory diameter (Motlik and Fulka, 1986; Greenwald and
Terranova, 1988). In rhesus monkeys, an antrum appears
at 3% (Greenwald and Terranova, 1988), in pigs at 4.5%

(Motlik and Fulka, 1986) and in marmoset monkeys at
15% of final ovulatory diameter (Gilchrist et al., 1995).
Consequently it is also more appropriate to consider meiotic
competence in relation to follicular diameter as a propor-
tion of ovulatory size. Marmoset monkey oocytes from 
follicles at 2% of final ovulatory diameter are meiotically
incompetent (Gilchrist et al., 1995).

In all non-rodent species studied, the ability of oocytes
to resume meiosis is acquired when the diameter of the
follicle is about 9–13% of the ovulatory diameter, a stage
by which oocyte growth is completed (Gilchrist et al.,
1995). In oocytes, the ability to complete maturation to
metaphase II and developmental competence is acquired
progressively with increasing follicular diameter. Goat
oocytes from follicles > 5 mm in diameter undergo fertil-
ization and develop to blastocysts at rates comparable to
ovulated oocytes (Crozet et al., 1995). Cow oocytes from
follicles > 6 mm have about twice the developmental 
potential of oocytes from 2–6 mm follicles (Tan and Lu,
1990; McCaffrey et al., 1992; Lonergan et al., 1994). Cow
oocytes from follicles < 3 mm not only show a signifi-
cantly lower rate of maturation and fertilization but also
fail to cleave beyond the 8- to 16-cell stage of develop-
ment (Pavlok et al., 1992; Blondin and Sirard, 1995).
Follicle diameter and oocyte diameter are significantly
correlated in the cow for follicles in the range of < 1 mm
to > 4 mm, and the proportion of oocytes completing 
maturation to metaphase II in vitro is associated with 
increasing oocyte diameter, at least up to 110 mm in diam-
eter. Cow oocytes < 110 mm show a significant increase in
the incorporation of tritiated uridine compared with larger
oocytes, indicating that the smaller oocytes are in the
growth phase and still actively synthesizing RNA that is 
essential to maturation and later development (Fair et al.,
1995). In cows, oocytes appear to acquire full meiotic
competence at a diameter of 115 mm and attain the com-
petence for preimplantation embryonic development to
expanded and hatching blastocysts at a diameter of
120 mm (Otoi et al., 1997).

Human and macaque oocytes resume spontaneous
meiosis in vitro at a very low rate compared with other
species (Edwards, 1965). The explanation for this observa-
tion could be that meiotic competence occurs relatively
late in the growth phase or that maturation requires both
stimulation and removal of inhibition (Lefevre et al.,
1987). The human oocyte has a size-dependent ability to
resume meiosis and complete maturation in vitro and this
increases significantly as the oocyte increases in diameter
from 90 to 120 mm (Durinzi et al., 1995). Furthermore,
this size-dependent ability for meiotic competence may
also depend on the size of the follicle and the stage of the
menstrual cycle. Oocytes retrieved from the follicular
phase of the menstrual cycle from follicles of 9–15 mm 
in diameter complete meiotic maturation to metaphase II
at a higher rate than oocytes from follicles of 3–4 mm in
diameter (Tsuji et al., 1985; Whitacre et al., 1998). Wynn
et al. (1998) reported that 5 mm was the minimum follicle
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diameter from which oocytes would mature in vitro.
Oocytes retrieved from follicles in the luteal phase of the
menstrual cycle completed maturation at the same rate 
irrespective of follicle size (Tsuji et al., 1985). 

Many studies have been undertaken to determine the
effect of follicle size on the maturational status and subse-
quent fertilization, development and competence of the
human oocytes from gonadotrophin-stimulated ovulatory
cycles. The incidence of mature oocytes recovered after
superovulation with human menopausal gonadotrophin
(hMG) and human chorionic gonadotrophin (hCG) increases
with increasing follicular size (Simonetti et al., 1985). The
proportion of mature oocytes from follicles > 15 mm in di-
ameter remained constant. In follicles < 15 mm in diame-
ter there was a significant reduction in mature oocytes;
only 30% of oocytes mature in follicles of 12–14 mm and
9% in follicles < 11 mm in diameter (Scott et al., 1989).
There is widespread opinion that after gonadotrophin 
stimulation the fertilization rate is lower in oocytes obtained
from follicles < 10 mm in diameter than in those obtained
from larger follicles (Wittmaack et al., 1994; Dubey et al.,
1995; Salha et al., 1998a). This low fertilization rate is
probably due to the increase in immature oocytes recov-
ered from smaller follicles. Fertilization has been reported
to increase progressively with an increase in follicle diam-
eter from 10 mm (Dubey et al., 1995), although others
have reported that once a follicle has reached 10–12 mm
in diameter the fertilization rate remains relatively constant
with progressive follicle growth (Haines and Emes, 1991;
Wittmaack et al., 1994; Salha et al., 1998a). Embryo
cleavage rates were reported to be significantly decreased
or not significantly different for oocytes obtained from 
follicles < 12 mm in diameter. Embryo quality (assessed 
on morphology of the blastomeres and degree of fragmen-
tation), implantation, pregnancy and birth rates appear to
be independent of follicle size in stimulated cycles
(Wittmaack et al., 1994; Salha et al., 1998a). 

In monovular species, one or two follicles become
dominant in the final growth phase, leading to a marked
increase in the ratio of oestrogen:androgen of the dominant
follicle or follicles. The remaining cohort of antral follicles
remain androgen dominated and ultimately undergo 
atresia. Prolonged exposure to androgens in sub-dominant
follicles may have an adverse effect on oocyte viability
and developmental competence (Anderiesz and Trounson,
1995). In humans, the dominant follicle can usually be
recognized by ultrasonography when it has reached
10 mm in diameter (Fauser and van Heusden, 1997). In a
large study of gonadotrophin-stimulated IVF cycles,
Wittmaack et al. (1994) reported that the size of the lead-
ing follicle did not affect the fertilization and cleavage
rates of cohort oocytes. In contrast, Russell (1998) reported
a marked decrease in the rates of maturation, fertilization
and transfer among cycles in which immature oocytes
were retrieved when a dominant follicle of > 14 mm was
present at the time of retrieval.

Studies in this laboratory indicate that oocytes retrieved

from follicles in an untreated natural cycle, or from a cycle
in which clomiphene citrate is used for minimal ovarian
stimulation, are capable of complete development to the
blastocyst stage after administration of exogenous hCG
(5000 iu) to induce maturation in vivo as early as day 8 of
the menstrual cycle with a leading follicle diameter of
12 mm (Table 1). Mature oocytes were recovered by 
transvaginal aspiration 36 h after hCG administration.
Development of embryos in the cohort follicles in these
cycles appeared to be independent of the diameter of the
leading follicle at the time of hCG injection (Table 2).
Development to the blastocyst stage was observed from
the smallest follicle (6 mm) retrieved in this study (Fig. 1).
A live birth resulted from the transfer of a single blastocyst
from a follicle measuring only 11 mm at the time of hCG
injection when the leading follicle was 19 mm in diam-
eter. Sixty-one per cent of all the oocytes retrieved and 
fertilized developed to the blastocyst stage, a number
comparable to that observed in gonadotrophin-stimulated
cycles (hMG or FSH and hCG treated) using identical 
culture conditions (Jones et al., 1998). In our studies, patients
with regular menstrual cycles undergoing an in vitro matu-
ration cycle have a leading follicle > 9 mm in diameter by
days 8−13 of the menstrual cycle in 79% of cases, but
anovulatory or irregularly ovulating patients with polycys-
tic ovarian disease syndrome (PCOS) rarely have a leading
follicle > 9 mm in diameter at the time of immature oocyte
recovery. These data indicate that the developmental com-
petence of the in vitro matured oocyte must be compro-
mised by some inherent but unidentified problem in the
maturation process in vitro rather than being directly re-
lated to reduced follicle size, at least for follicles > 6 mm
in diameter.

Source of oocytes used for in vitro oocyte
maturation

Oocytes of farm animals can be obtained from abattoirs
after slaughter of the animals. Ovaries are recovered from
the animals and kept in warm PBS for transport to the 
laboratory. Oocytes are then aspirated from the antral fol-
licles visible on the surface of the ovary or identified under
the dissecting microscope from minced ovarian tissue.
Cows in different phases of the ovulatory cycle (follicular
and luteal) or even pregnant at the time they are killed 
do not show any marked difference in the maturational
competence of oocytes. Maturation in vitro of cow oocytes
recovered by transvaginal ultrasonography show compar-
able developmental competence to oocytes matured in the
ovaries of animals and grown to blastocysts in the donor
(Bousquet et al., 1999). In this large scale study, the donor
cows were given 4 days of FSH treatment (total of 400 mg
FSH) after removal of the dominant follicle and the
oocytes were recovered 44−48 h after the end of FSH
treatment. Oocyte developmental competence was not
compromised by either maturation in vitro, IVF or embryo
culture (Fig. 2). The medium used for maturation was tis-
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sue culture medium 199 (TCM 199) with 10% fetal bovine
serum (FBS), 0.5 mg FSH ml–1, 5 mg LH ml–1 and 1 mg
oestradiol ml–1, and is similar to that used by Moor and
Trounson (1977) for the successful maturation of sheep
oocytes in follicle culture. A detailed consideration of the
gonadotrophin, steroid and growth factor benefits for
bovine oocyte maturation (Bevers et al., 1997) indicates
that the major benefits are from components that are 

already present in the TCM 199 medium described above.
This finding indicates that the factors governing oocyte
maturation in vitro are primarily intrinsic to the follicle,
oocyte−cumulus mass or the oocyte itself. Surprisingly,
only relatively minor changes in developmental com-
petence of animal and human oocytes have been recorded
in numerous studies on culture media and conditions for
oocyte maturation.
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Table 1. Diameter of the leading dominant follicle on the day of human chorionic gonadotrophin (hCG) injection and its relationship to 
human embryo development   

Oocytes
Oocytes fertilized

Diameter of recovered from
leading from leading leading

Maximum stage of embryo development (%)

dominant Number of dominant dominant Cleavage Expanded/hatched
follicle cycles follicle follicle only Morula Blastocyst blastocyst

10 1 1 0
11 0 0
12 1 1 1 1
13 3 2 2 1 1
14 3 2 1 1
15 9 6 4 2 2
16 8 4 2 2
17 8 4 1 1
18 6 2 2 1 1
19 8 6 5 1 2 1 1
20 2 2 2 2
21 4 2 2 1 1
22 3 3 1 1
26 1 1 1 1

Total 57 36 24 8 (33%) 6 (25%) 4 (17%) 6 (25%)

Table 2. Influence of the diameter of the leading follicle on human embryo development in the cohort follicles

Diameter  Number Number of
of leading of oocytes zygotes

Maximum stage of embryo development (%)

dominant Number of from cohort from cohort Cleavage Expanded/hatched
follicle cycles follicles follicles only Morula Blastocyst blastocyst

10 1 0
11 0 0
12 1 0
13 3 2 1 1
14 3 4 2 1 1
15 9 11 5 4 1
16 8 8 5 1 1 3
17 8 14 12 3 3 6
18 6 8 4 2 2
19 8 8 4 1 1 1 1
20 2 1 1 1
21 4 7 5 1 4
22 3 9 6 1 1 2 2
26 1 2 1 1

Total 57 74 46 11 (24%) 7 (15%) 9 (20%) 19 (41%)



Immature oocytes from PCOS patients

Methods were developed by Trounson et al. (1994) for
the recovery of oocytes from the ovaries of patients with
PCOS in which the dominance of a particular follicle fails
to occur and the cohort of growing follicles accumulates
in the cortex. Most of these follicles are about 5 mm in 
diameter (range 3−8 mm) and remain under an androgen-
dominated environment due to increased thecal cell secre-
tion of androgens and a blockage of aromatization in the
granulosa cell compartments (Almahbobi and Trounson,
1996). It is not uncommon for > 20 small to medium
sized antral follicles to be present in each ovary of PCOS
patients. When oocytes are recovered by transvaginal
guided ultrasonography they can be readily identified and
will undergo nuclear maturation in a number of different
culture media, undergo fertilization after insemination or
intracytoplasmic sperm injection (ICSI) and begin cleavage
in culture (Trounson et al., 1994, 1996, 1998). Compared
with oocytes recovered from regularly cyclic non-PCOS
women, oocyte maturation, fertilization and embryo 
development in culture is significantly retarded (Barnes et
al., 1996). However, babies have been born from the
cleaving embryos and blastocysts produced as a result of
in vitro oocyte maturation (Trounson et al., 1994; Barnes
et al., 1995) although implantation rates are generally low
(Trounson et al., 1998). Barnes et al. (1996) also suggested
that oocytes from PCOS patients were at a disadvantage
because of the abnormal endocrine environment and stasis
of follicular growth. It is of interest to note that most of the
follicles in these PCOS patients are not atretic (Almahbobi
et al., 1996), nor does follicular atresia appear to reduce
the developmental competence of human oocytes (Barnes
et al., 1996). A marked improvement in viability of embryos
produced from in vitro maturation of oocytes derived from

PCOS patients was reported by Cha and Chian (1998).
They recovered 910 oocytes from 72 PCOS cases (12.6
oocytes per case) and of 832 oocytes cultured, 499 (60%)
matured to metaphase II. Eighty per cent of the metaphase
II oocytes underwent fertilization and 306 embryos were
transferred to 64 patients (4.7 embryos per patient) to yield
16 pregnancies (one twin pregnancy). The overall implan-
tation rate was 5.6% per embryo transferred, but notably a
mixture of pronuclear oocytes and early cleavage stage
embryos was transferred in this study.

The media used to mature human oocytes by Cha and
Chian (1998) was TCM 199 with 20% FBS and contained
10 iu equine chorionic gonadotrophin (eCG) ml–1 and
10 iu hCG ml–1. eCG has approximately 50:50 FSH and
LH bioactivity. This medium is again very much like the
original follicle culture medium of Moor and Trounson
(1977) and, like the successful bovine oocyte maturation
medium, contains a large quantity of FBS. FBS is consid-
ered crucial for bovine oocyte maturation and may also
contain factors essential for human oocyte maturation
(Barnes, 1999). A medium designed to meet the nutritional
and maturational needs of human oocytes based on a 
detailed review of oocyte metabolism and developmental
competence (human oocyte maturation (HOM) medium;
Table 3) has been tested for maturation, fertilization and
embryo development of oocytes recovered from PCOS pa-
tients without any apparent benefit for these parameters
compared with a commonly used commercial amniocyte
culture medium that contains bovine serum (Chang’s
medium; Trounson et al., 1998). There is a need to explore
more extensively the role of culture medium and additives
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Fig. 1. Influence of the diameter of the follicle on the day of
human chorionic gonadotrophin (hCG) injection on subsequent
development to the blastocyst stage. The values in parentheses
are number of embryos (n).
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for maturation, particularly the importance and replace-
ment of the FBS component with an appropriate combina-
tion of growth factors and other components that are
present in the follicular milieu. FBS continues to be used
with some success despite the concerns about potential
transmission of infectious agents. From this point of view,
HOM medium may be preferable for the clinical applica-
tion of oocyte maturation in vitro.

A rather unusual variant of treatment for PCOS patients
with irregular menstrual cycles was reported by Chian et al.
(1999a,b) and involves oocyte maturation in vitro. The 
patients were given intravaginal progesterone (300 mg
once a day) for 10 days to induce withdrawal bleeding
and 10–14 days later were given 10 000 iu hCG and the
oocytes that were visible by transvaginal ultrasonography
recovered from antral follicles. The oocytes were matured
in vitro for 24–48 h in TCM 199 containing the patient’s

own serum (20%), 25 mmol pyruvic acid l−1 and 75 miu
hMG. Of 25 patient treatment cycles, ten resulted in preg-
nancy (40%) when an average of 2.9 embryos were trans-
ferred. The authors claimed that priming with hCG before
oocyte recovery increased the developmental competence
of the immature oocytes recovered. However, no data
were provided to show that the oocytes were immature
after hCG injection. Our observations reported earlier in
this review show that the oocytes recovered are mature
36 h after hCG, even from follicles as small as 6 mm in 
diameter at the time of hCG injection. In a further study
(Chian et al., 2000), the authors showed that 46% of
oocytes were already maturing in hCG primed patients
and the oocytes completed meiosis 12–24 h ahead of
oocytes from unprimed (no hCG administration) patients.
The final outcomes of fertilization, embryo development
and pregnancy rates for hCG primed and unprimed patients
were not significantly different.

Oocyte maturation after superovulation of IVF patients
with gonadotrophins (hMG, FSH and hCG)

Normal methods for superovulation in human IVF entail
the control of endogenous gonadotrophins, usually by 
suppression of their secretion and release from the pituitary
by gonadotrophin releasing hormone (GnRH) agonists 
or antagonists. Multiple follicular growth is induced by 
administration of exogenous FSH and the final phase of
oocyte maturation is induced by hCG (Eldar-Geva et al.,
1999). However, about 5−7% of oocytes recovered after
superovulation for IVF are immature at the germinal vesicle
(GV) stage and require further maturation in vitro (see
Table 4). Some oocytes will complete maturation sponta-
neously in culture in vitro over 4−6 h before insemination
(Osborn, 1993) and after being denuded of cumulus cells
in preparation for fertilization by ICSI (De Vos et al.,
1999). Fertilization may be lower with these oocytes and
their cleavage and capacity to develop to term may be 
reduced (De Vos et al., 1999). The maturation of these
oocytes may be considered to be delayed, and any reduced
developmental competence compared with mature meta-
phase II oocytes may be related to the inability of the 
follicles to respond synchronously with other large follicles
to hCG administration.

The time course for GVBD differs for GV stage oocytes
recovered from superovulated IVF patients and untreated
women (Cha and Chian, 1998). After 12 h of culture 80%
of GV oocytes have undergone GVBD, whereas all the
oocytes recovered from untreated patients still had intact
GVs (Fig. 3). This leads to a disparity in the completion of
nuclear maturation in the oocytes from both sources (Cha
and Chian, 1998). About 75% of oocytes from superovu-
lated patients reach metaphase II by 30 h of culture,
whereas 75% of oocytes from untreated patients have 
extruded the first polar body by 42–45 h (Fig. 3). The dif-
ference in the onset of GVBD may be due to the priming
of follicles by FSH and hCG before recovery of the
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Table 3. Composition of human oocyte maturation (HOM) medium

Component Concentration

NaCl 105 mmol l−1

KCl 5.5 mmol l−1

NaH2PO4⋅2H20 0.5 mmol l−1

CaCl2⋅2H20 1.8 mmol l−1

MgSO4⋅7H20 1.0 mmol l−1

NaHCO3 25.0 mmol l−1

Sodium lactate 3.0 mmol l−1

Sodium pyruvate 0.3 mmol l−1

Glucose 5.5 mmol l−1

Glutamine 1.0 mmol l−1

Taurine 0.1 mmol l−1

Cysteine 0.1 mmol l−1

Cysteamine 0.5 mmol l−1

Essential amino acids (EAA) 1 3
Non-essential amino acids (NEAA) 2 3
Penicillin 0.06 g l−1

Streptomycin 0.05 g l−1

EDTA 0.1 mmol l−1

Vitamins 0.1 3
Human serum albumin 2 mg ml−1

Recombinant FSH 0.1 iu ml−1

Recombinant LH 0.5 iu ml−1

Epidermal growth factor (EGF) 10 ng ml−1

Insulin transferrin sodium selenite medium 
supplement (ITS) 10 ml per 10 ml

Oestradiol 1 mg ml–1

EAA: ICN (catalogue no. 1681149) 50 3 solution; use 200 ml per 10 ml to
give 1 3 concentration.
NEAA: ICN (catalogue no. 1681049) 100 3 solution; use 200 ml per 10 ml
to give 2 3 concentration.
Vitamins: ICN (catalogue no. 1601449) 100 3 solution; use 10 ml per
10 ml to give 0.1 3 concentration.
EGF: Sigma (catalogue no. E1264) 100 mg per vial; prepare 100 mg per
10 ml stock solution in HOM salts + 0.3% (3 mg ml−1) HSA. Add 10 ml
per 10 ml to give 10 ng ml−1.
ITS: Sigma (catalogue no. I1884) prepare 50 ml stock from one bottle and
store stock frozen in working aliquots, dilute stock 1:1000 in final 
solution = 10 ml per 10 ml.



oocytes. However, follicles that have immature oocytes
after administration of large doses of hCG (5000–
10 000 iu hCG) must lack sufficient blood supply to receive
the ovulatory stimulus or have insufficient LH receptors to
induce the oocyte maturation response in vivo (reviewed
by Salha et al., 1998b). Since many of the GV oocytes also
have unexpanded cumuli, it is likely that insufficient FSH
and LH is available to these follicles in vivo to induce
oocyte maturation. 

Oocytes considered to be immature by cumulus and
corona cell expansion after superovulation of IVF patients
can be matured in culture without gonadotrophin or
steroid supplements (Veeck et al., 1983; Dandekar et al.,
1991) but the culture medium usually contains the patient’s
own serum and occasionally granulosa cells recovered
from the same follicle or from other follicles that contained
a mature oocyte. There are numerous case reports of
development to term after maturation of oocytes recovered
from superovulated patients without any special additives
to culture medium (Nagy et al., 1996; Edirisinghe et al.,
1997; Tucker et al., 1998). Pregnancies have also been 
reported for IVF patients who were not given the final 
ovulating dose of hCG either by mistake (Liu et al., 1997)
or to reduce the probability of ovarian hyperstimulation
syndrome (OHSS) (Jaroudi et al., 1997; Coskun et al.,
1998). In the former case, 50 iu FSH ml–1 and 50 iu hCG
ml–1 in B2 Ménézo medium was used for oocyte matura-
tion. In the latter case, hMG and hCG were also added to
the culture medium for oocyte maturation (75 miu hMG
ml–1 and 500 miu hCG ml–1 in human tubal fluid or Ham’s
F10 culture medium supplemented with 10% synthetic
serum substitute; Irvine Scientific, Santa Ana, CA). Jaroudi
et al. (1999) used this procedure and reported a pregnancy
rate of 9.5% and an implantation rate of 4.5% per trans-
ferred embryo.

It is interesting that oocytes appear to mature sponta-
neously or in the presence of gonadotrophins when patients
are treated as if to recover mature oocytes for conventional
IVF. However, there is very limited application for matura-
tion in vitro in association with superovulation except to
use the few immature oocytes that are recovered, or as a
precaution to prevent OHSS, although in overstimulated
IVF patients other strategies are available for treating this
potential problem.

Pre-treatment of women with hMG or FSH for oocyte
maturation

Preliminary studies of the treatment of women for 1 or 3
days with recombinant human FSH (rhFSH) early in the
follicular phase showed no difference in the recovery rate
of oocytes, or oocyte maturation, fertilization or develop-
ment in culture (Trounson et al., 1998). This finding was
confirmed by Mikkelsen et al. (1999) who also treated
women for 3 days with rhFSH (150 iu once a day, days
3–5 of the cycle) and found no improvement in any par-
ameter of oocyte recovery, maturation or developmental

competence. Oocytes were matured in TCM 199 with
75 miu rhFSH ml–1, 500 miu hCG ml–1 and 10% patient’s
own serum from the day of oocyte recovery. Mikkelsen et
al. (1999) claimed a benefit of reduced culture period 
for maturation (36 versus 48 h) on implantation rates of
embryos produced. However, this aspect was not tested in
the same experiment. Implantation rate was 15% for
oocytes matured for 36 h and 7% for oocytes matured for
48 h, for embryos transferred in the two experiments. No
benefit of an abbreviated culture interval for maturing
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Fig. 3. Time course of (a) germinal vesicle breakdown (GVBD)
and (b) the completion of maturation to metaphase II (extrusion 
of first polar body) in immature oocytes obtained from super-
ovulated (stimulated, d) and untreated patients (unstimulated, s).
(a) Stimulated 83.3% = 30/36; unstimulated 87.5% = 35/40. (b)
Stimulated 75.0% = 27/36; unstimulated 77.5% = 31/40. Repro-
duced with permission from Cha and Chian (1998).
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Table 4. Maturation, fertilization, embryo cleavage and pregnancy rates from in vitro matured human oocytes from cycles in which
oocytes had been exposed to exogenous human chorionic gonadotrophin (hCG) in vivo

Pregnancy from
Number of transfer of 

Number immature Resumption Maturation Embryo in vitro matured
of cycles oocytes of meiosis (metaphase II) Fertilization cleavage embryos only Study

44 74 97% 86% 85% 90% Singleton Veeck et al., 1983

40 65 NR 36−74%  36−64% NR NR Prins et al., 1987
dependent on 
supplementation
with hMG

85 132 NR NR 20−54% NR NR Dandekar et al., 
dependent on 1991
co-culture with 
granulosa cells

66 254 NR 75−83% 57−58% 79−90% NR Toth et al., 1994a

3−12% blastocysts

56 145 82−84% 38−82% 44% 100% NR Janssenswillen 
dependent on et al., 1995
culture conditions

1 14 100% 64% 78% 71% Singleton Nagy et al., 1996

1 5 100% 100% 80% NR Singleton Edirisinghe et al., 
1997a

26 80 50−100% 10−80% 50−87% NR NR Fahri et al., 1997
dependent on 
6 cumulus intact 
and 6 sperm 
co-culture

92 315 75−90% 34−64% 59−66% 48−89%  NR Goud et al., 1998
dependent on 6 cumulus 6 cumulus
cumulus 46−72%  
denuded 6 EGF + cumulus 6 EGF
80−82% 
dependent 
on cumulus 
intact 6 EGF

59 101 NR 30−32% 6 62−77% ± NR Singleton Thornton et al., 
follicular fluid follicular fluid Singletona 1998a

1 13 NR 67% 100% 100% Singleton Tucker et al., 
1998a

2804 4716 Only GVBD 27% by 4 h 53% (less 83% Singleton De Vos et al., 
oocytes than sibling (comparable 1999
studied metaphase II to sibling 

oocytes) metaphase 
II oocytes)

2 14 NR 79% 100% NR Singleton Chian et al., 
Triplet 1999a

25 249 NR 84% 87% 95% Singleton Chian et al., 
Singleton 1999b
Twins
Five ongoing
Two miscarriages

13 102 NR 84% 91% 95% Five clinical Chian et al., 2000

aIncludes cryopreservation of immature oocytes.
EGF: endothelial growth factor; GVBD: germinal vesicle breakdown; hMG: human menopausal gonadotrophin.
NR: not reported or not carried out.



oocytes of untreated patients (24, 36 or 48 h) could be 
detected by Trounson et al. (1994, 1996).

Mikkelsen et al. (1999) did not observe any benefit of
extending the rhFSH pre-treatment from 3 to 6 days to pro-
duce follicles > 10 mm in diameter. However, Wynn et al.
(1998) administered 600 iu rhFSH to women over 5 days
(300 iu on day 2, 150 iu on day 4 and 150 iu on day 6) for
recovery of immature oocytes (day 7). A mean of 7.5
oocytes was recovered after rhFSH treatment compared
with 5.2 oocytes from untreated women. Maturation to
metaphase II was higher in rhFSH treated women (71%)
compared with untreated women (44%) and hence more
metaphase II oocytes resulted after rhFSH treatment (mean
of 4.8 versus 2.1 for untreated women). The medium used
was Eagles’ minimum essential medium (EMEM) with a
number of additives including 10 miu rhFSH ml–1 and
100 miu hCG ml–1.

The failure to achieve a substantial improvement in the
number and developmental competence of oocytes by
pre-treatment with FSH indicates that maturation in vitro is
not limited by the growth phase of follicles in the ovaries.
Normally one or two follicles become dominant in the

ovulatory cycle and the other antral follicles cease growth
and will enter atresia as the follicular phase progresses.
There seems little detectable difference in the maturational
and developmental competence of oocytes recovered 
from the dominant follicle or those from atretic follicles, a
surprisingly common observation that was first made by
Moor and Trounson (1977) in sheep follicle culture. There
would be no clinical application of pre-treatment of
women with FSH to collect immature oocytes, unless a
very substantial benefit could be demonstrated for matura-
tion and development to term. Such a benefit appears 
to be unlikely from the present data. It would also seem
unlikely that pre-treatment with FSH after removal of the
dominant follicle, a protocol demonstrated to maximize
bovine embryo production, would be similarly beneficial
when applied to women (Bousquet et al., 1999; Fig. 2).

Maturation of oocytes from untreated women

The human ovary contains numerous antral follicles
during the follicular and luteal phase of the ovulating
cycle and during pregnancy. The harvest of immature
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Fig. 4. Human in vitro matured oocytes. (a) In vitro matured oocyte with the first polar body visible (black arrow) and remnants of cumulus
cell cytoplasmic processes (white arrow). Note expansion of the cumulus cells. (b) Germinal vesicle (GV) stage oocyte surrounded by 
cumulus cells. The oocyte cytoplasm is darker towards the pole opposite the GV. (c) Healthy GV stage oocyte deeply embedded in 
follicular granulosa cells. (d) GV stage oocyte embedded in dark atretic cumulus cells.
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Table 5. Maturation and embryo culture conditions in human in vitro maturation (IVM) cycles in which oocytes had not been exposed
to exogenous human chorionic gonadotrophin (hCG) in vivo

Embryo Embryo
IVM culture Maturation culture culture

Source of oocytes IVM culture medium conditions time (h) medium time (h) Authors

Ovarian resection Ham’s F10 + 5% CO2 in air 43 NR NR Tsuji et al., 1985
Oophorectomy glutamine + 15%

FBS + penicillin

Ovarian resection B2 5% CO2 in air 48 NR NR Lefevre et al., 1987
Oophorectomy

Ovarian biopsy Ham’s F10 NR 32–48 Ham’s F10 + 24−48 Cha et al., 1991
Oophorectomy + 20% FCS/50% FF 20% FCS

Aspiration, laparotomy B2 6 EGF 6 IGF-I NR 24–48 NR NR Gomez et al., 1993
Ovarian resection
Oophorectomy

Aspiration, vaginal EMEM + Earle’s Microdrops under 21–54 HTF + 10% 58−68 Trounson et al., 
ultrasonography salts + glutamine/ paraffin oil patient serum 1994

Polycystic ovaries TCM 199
+ 10% FBS 1 ml in culture tubes
+ 75 miu hMG ml−1 1 ml in 
+ 1 ml oestradiol co-culture dishes 
6 500 miu hCG ml−1 5% CO2 in air/5%
6 granulosa cell CO2, 5% O2, 90% N2
co-culture 

Aspiration, vaginal TCM 199 + 10% Under silicon oil 36–46 HTF +10% 68−110 Barnes et al., 1995a

ultrasonography FBS + 75 miu 5% CO2 in air patient serum or 
Polycystic ovaries rhFSH ml−1 G1/G2 + BSA

+ 500 miu hCG 
ml−1 + pyruvate
+ penicillin + 
streptomycin

Aspiration, vaginal TCM 199 + 10% FBS Under silicon oil NR HTF + 10% NR Barnes et al., 1996
ultrasonography + 75 miu rhFSH ml−1 5% CO2 in air patient serum

Polycystic ovaries and + 500 miu hCG 
normal ovaries ml−1 + pyruvate 

+ penicillin
+ streptomycin

Oophorectomy Ham’s F10 + 7.5% 5% CO2 in air 24−72 NR NR Durinzi et al., 1997
FBS ± 75 miu 
urofollitropin ml−1

Aspiration, vaginal HTF + 10% Under mineral oil 48 HTF + 10% ≈ 72 Jaroudi et al., 
ultrasonography SSS + 75 miu SSS + cumulus + 1997a

hMG ml−1 granulosa cells
+ 500 miu hCG 
ml−1

+ granulosa cells

Aspiration, vaginal B2 + 50 iu FSH ml−1 Under paraffin oil 48 B2 48 Liu et al., 1997a

ultrasonography + 50 iu hCG ml−1 5% CO2 in air frozen
Gonadotrophin 
stimulated ovaries

Aspiration, vaginal EMEM/TCM 199 NR 52 HTF + 6% SSS 72 Russell et al., 1997
ultrasonography + 1 ml oestradiol 

Oestradiol primed + 75 miu FSH ml−1 +
ovaries 500 miu hCG ml−1

+ 3% SSS

Continued.
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Table 5. (Continued)

Embryo Embryo
IVM culture Maturation culture culture

Source of oocytes IVM culture medium conditions time (h) medium time (h) Authors

Aspiration, vaginal TCM 199 + 20% NR NR NR ≈ 48 Cha and Chian, 
ultrasonography FBS + 10 iu PMSG ml−1 1998

Polycystic ovaries + 10 iu hCG ml−1

Aspiration, vaginal HTF/Ham’s F10 + Under paraffin oil 44 NR NR Coskun et al., 1998
ultrasonography 10% SSS + 75 miu 

Gonadotrophin hMG ml−1 + 500 miu
stimulated ovaries hCG ml−1 + granulosa cells

Aspiration, HTF + 150 miu hMG Under mineral oil 36−48 HTF + 10% ≈ 168 Hwu et al., 1998
Caesarean section ml−1 + 1 mg oestradiol 5% CO2 in air FCS 6 human

ml−1 + 10% FCS ampullary
epithelial cell 
monolayer

Aspiration, HTF + 10% SSS Under mineral oil 24−48 NR NR Whitacre et al., 
laparoscopy/ 5% CO2 in air 1998
laparotomy

Oophorectomy

Aspiration, vaginal EMEM + Earle’s salts Under mineral oil 24−52 NR NR Wynn et al., 1998
ultrasonography + 0.1% HSA + pyruvate 5% CO2 in air
6 gonadotrophin + penicillin + streptomycin 
‘primed’ ovaries + insulin + transferrin 

+ selenium + glutamine 
+ 10 miu rhFSH ml−1

+ 100 miu hCG ml−1

Aspiration, vaginal HTF + 10% Under mineral oil 44 HTF + 10% ≈ 72 Jaroudi et al., 1999
ultrasonography SSS + 75 miu SSS + cumulus/

Gonadotrophin hMG ml−1 + granulosa cells
stimulated ovaries 500 miu hCG ml−1

Aspiration, vaginal TCM 199 + 0.4% 5% CO2 in air 24−36 SIS IVF50: > 110 Cobo et al., 1999
ultrasonography HSA + pyruvate S2 + human 

+75 miu rhFSH ml−1 endometrial 
+ 500 miu hCG ml−1 epithelial cells
+ 2 ng EGF ml−1 + 
1 mg oestradiol ml−1

Aspiration, vaginal TCM 199 + pyruvate Under paraffin oil 36−48 Medicult IVF ≈ 48−72 Mikkelsen et al., 
ultrasonography + penicillin  5% CO2 in air 1999
6 gonadotrophin + streptomycin + 1 mg 
‘primed’ ovaries oestradiol ml−1 + 

75 miu rhFSH ml−1

+ 500 miu hCG ml−1

+ 10% patient serum

Aspiration, vaginal TCM 199 + pyruvate 5% CO2 in air 48 Medicult IVF ≈ 48−72 Chian et al., 2000
ultrasonography + 75 miu FSH ml−1

6 hCG primed + LH + 20% FBS
ovaries

aCase report.
B2: Menezo’s medium; BSA: bovine serum albumin; EGF: epidermal growth factor; EMEM: Eagle’s minimal essential medium; FBS: fetal bovine serum;
FCS: human fetal cord serum; FF: follicular fluid; hCG: human chorionic gonadotrophin; hMG: human menopausal gonadotrophin; HTF: human tubal
fluid medium; HSA: human serum albumin; IGF-I: insulin-like growth factor I; SIS: Scandinavian IVF Sciences AB; SSS: synthetic serum supplement (Irvine
Scientific, Santa Ana, CA); TCM 199: tissue culture medium 199.
‘Primed’ indicates a truncated course of treatment compared with routine IVF stimulation cycles.
NR: not reported or not carried out.
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Table 6. Maturation, fertilization, embryo cleavage and pregnancy rates from in vitro matured human oocytes from cycles in which
oocytes had not been exposed to exogenous human chorionic gonadotrophin (hCG) in vivo

Number Number  of
of immature Resumption Maturation Embryo
cycles oocytes of meiosis (metaphase II) Fertilization cleavage Pregnancy Study

90 96 35−69% 9−35% NR NR NR Tsuji et al., 1985
dependent dependent
on size of on size of 
follicle and follicle and
cycle stage stage of cycle

11 24 31−73% NR NR NR NR Lefevre et al., 1987
dependent 
on state of 
follicle atresia

23 157 NR 36−56% 32−81% IVF 78.7% Triplets Cha et al., 1991
dependent on normal
culture medium embryos
supplement

40 125 33−75% at 24 0−16% at 24 NR NR NR Gomez et al., 1993
and 48 h and 48 h
82−100% at 24 20−55% at 24 
and 48 h with EGF and 48 h with EGF
88−100% at 24 24−38% at 24
and 48 h with and 48 h with
IGF-I IGF-I

42 159 81−100% at 18−81% 41−45% IVF Retarded Singleton Trounson et al., 
21−22 and at 23−25 and 1994
48−54 h 48−54 h

1 13 NR 47−77% 0−80% 75−100% (68 h) Singleton Barnes et al., 1995
IVF/ICSI 17% (110 h)

20 234 NR 60−100% 20−67% IVF 10−60% NR Barnes et al., 1996
dependent on Retarded only
menstrual cycle in irregular 
regularity and cycles
cumulus cover 
of oocytes

11 58 79−90% 38−59% NR NR NR Durinzi et al., 
dependent on dependent on 1997
urofollitropin urofollitropin

1 10 100% 90% 78% ICSI 100% Singleton Jaroudi et al., 1997
(death after 
premature 
delivery)

1 5 100% 100% 20% ICSI 100% Singleton Liu et al., 1997

14 161 NR 40−62% 75% ICSI 64−92% Singleton Russell et al., 1997
dependent on 
time of oestradiol 
follicular priming

72 832 NR 60% 80% ICSI 90% Twins Cha and Chian, 
15 singletons 1998

20 162 78% 66% NR NR NR Coskun et al., 1998

Continued.



oocytes from antral follicles visible in the ovarian cortex
provides the opportunity to study the maturation process
in vitro and to avoid the administration of gonadotrophins
to women for collection of multiple oocytes. Reports to date
of maturation in vitro of human oocytes from untreated
women are summarized (Tables 5 and 6).

It was originally shown by Cha et al. (1991) that
oocytes recovered from ovaries removed from women for
various gynaecological conditions can be matured in culture
in Ham’s F10 medium with 20% fetal cord serum (FCS) 
or 50% follicular fluid from preovulatory follicles that 
contained mature metaphase II oocytes. Maturation in
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Table 6. (Continued)

Number Number  of
of immature Resumption Maturation Embryo
cycles oocytes of meiosis (metaphase II) Fertilization cleavage Pregnancy Study

51 268 NR 67% 70% IVF 87−89% NR Hwu et al., 1998
Comparable 
development to
IVF for initial 
48 h
30% blastocysts 
in co-culture

88 289 46−59% at 9 and 36% at NR NR NR Whitacre et al., 
24 and 48 h 24 and 48 h 1998
48−60% 29−32% 
dependent on dependent on
source of oocytes source of oocytes
54−61% 30−35% 
dependent dependent on 
on patient age patient age
44−63% 31−33%
dependent on dependent on
stage of menstrual menstrual
cycle cycle stage

26 160 72−84% 44−71% NR NR NR Wynn et al., 1998
dependent on dependent on
‘priming’ ‘priming’
59−61% at 20 8−47% at 20
and 54 h and 54 h 

21 171 NR 71% 59% ICSI 75% Singleton Jaroudi et al., 1999
Poorer quality Singleton
than IVF cycles (death after 

premature 
delivery at 
24 weeks)

19 112 NR 37−52% 66−88% 36−57% NR Cobo et al., 1999
dependent on ICSI Development 
presence of to blastocyst
dominant follicle

32 115 NR 71−81% 61−79% 53−72% Two Mikkelsen et al., 
dependent on ICSI singletons 1999
duration of delivered
‘priming’ Three 

singletons 
ongoing

One singleton  
miscarried

11 81 NR 69% 84% 96% Three clinical Chian et al., 2000

NR: not reported or not carried out.
EGF: epithelial growth factor; ICSI: intracytoplasmic sperm injection; IGF-I: insulin-like growth factor I.



medium with follicular fluid resulted in 56% metaphase II
oocytes after 32−48 h and 81% of the mature oocytes under-
went fertilization. Lower results were obtained with FCS
(36% maturation to metaphase II and 32% fertilization).
When five embryos were transferred to a patient, a triplet
pregnancy resulted. No difference in oocyte maturational
or developmental competence could be identified between
oocytes recovered in the follicular or luteal phase of the
ovulatory cycle. 

The introduction of ultrasound guided oocyte retrieval
of immature oocytes by Trounson et al. (1994) allowed
greater access to growing follicles in the ovaries and the
examination of an alternative to administration of high
doses of gonadotrophins to women for superovulation. In
EMEM with 10% FBS, 75 miu hMG ml–1, 500 miu hCG
ml–1 and 1 mg oestradiol ml–1, 81% of oocytes matured 
to metaphase II by 48−54 h of culture. The replacement 
of EMEM with TCM 199 produced the same outcomes 
for maturation, fertilization and embryo development, 
including births from maturation in both media (Trounson
et al., 1994; Barnes et al., 1995, 1996). These studies
again confirmed that oocyte–cumulus health (tight cumulus–
corona cover, loose or partly absent corona cover, de-
nuded oocytes, obvious atresia in cumulus–corona cover;
Fig. 4) had no obvious effect on maturational or develop-
mental competence (Barnes et al., 1996). It was apparent
that oocytes from women with regular ovulatory cycles
had a better cleavage rate than those who were anovula-
tory or had irregular menstrual cycles (Barnes et al., 1996).
Russell et al. (1997) claimed that administration of oestra-
diol to patients in the early to mid-follicular phase before
recovery of immature oocytes, increases maturation, fertil-
ization and their developmental competence. However, in
controlled studies reported by Trounson et al. (1998) there

was no benefit of oestrogen treatment of patients in any of
the parameters examined. It is possible that prolonged 
oestrogen treatment may increase uterine receptivity for
embryo implantation, although this remains to be proven.

In an interesting variation of natural cycle IVF, Thornton
et al. (1998) recovered immature GV oocytes from follicles
secondary to the one dominant follicle after hCG injection
(10000 iu). These follicles were < 12 mm and were matured
in Ham’s F10 + 50% follicular fluid as described by Cha 
et al. (1991) or in standard culture medium. There was 
no difference in maturation rates in vitro (30% and 32%,
respectively) or fertilization rates (77% and 62%, respec-
tively). A birth resulted from the transfer of an embryo in
the same cycle as the immature egg retrieval. An addi-
tional birth resulted from one of six transfers of cryopre-
served embryos derived from oocytes matured in vitro. A
similar approach was adopted by Chian et al. (1999a,b,
2000) for PCOS patients with irregular menstrual cycles,
and good pregnancy rates were achieved using maturation
medium with gonadotrophins and serum additives.

It has also been reported that oocytes recovered at the
end of pregnancy (Caesarean section) can be matured in
human tubal fluid (HTF) medium with 150 miu hMG ml–1,
10% FCS and 1 mg oestradiol ml–1 (Hwu et al., 1998).
Embryos failed to cleave beyond two to six cells in HTF
medium with 10% FCS, but 26% of the pronuclear zygotes
developed to blastocysts in human ampullary epithelial
cell co-culture. This finding again demonstrates the flexi-
bility of the origins of oocytes for maturation and under-
lines the importance of factors intrinsic to oocyte nuclear
and cytoplasmic health for developmental competence.
Providing culture medium and culture conditions are 
appropriate and suitable for maintaining the essential 
metabolism, growth and molecular expression patterns, a
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Fig. 5. Proportion of in vitro matured oocytes that underwent fertilization and developed to cleavage
stage embryos, morulae and blastocysts in vitro. Oocytes were matured in TCM 199 + gonadotrophins
or Chang’s medium for 48 h, fertilized by intracytoplasmic sperm injection (ICSI) and cultured in
Earle’s medium with 10% patient’s serum. Reproduced with permission from Trounson et al. (1998).



viable embryo can be obtained from a wide range of 
physiological and endocrine states. The challenge is to
recognize the key elements intrinsic to oocyte matura-
tional competence and to ensure that these are catered for
in the interventions required for oocyte maturation in vitro.
A recent examination of oocytes recovered after superovu-
lation in humans, or after ovulation in mice, for molecular
markers of apoptosis does not support the hypothesis that
apoptosis is responsible for fertilization and developmental
abnormalities (Van Blerkom and Davis, 1998). Hence 
the cytoplasmic and chromosomal defects that occur in
human oocytes are unlikely to be preprogrammed at least
by apoptotic mechanisms. The occurrence of these defects
may be due to interventions that interrupt the completion
of essential cellular processes and interfere with messages
from support cells required for molecular and cytoplasmic
maturation events.

Developmental competence of in vitro matured
oocytes

Nuclear maturation, the resumption of meiosis and comple-
tion of the first meiotic division, occurs in vitro for all
species studied to date. Significant numbers of immature
oocytes can be matured to metaphase II. Subsequent fertil-
ization, cleavage and development to viable offspring vary
according to the species studied. However, aberrations in
cytoplasmic maturation are more likely to be apparent as
failure in later stages of development (Moor et al., 1998). It
is of interest to note the improved rates of fertilization and
embryo development and viability after administering a
priming dose of hCG to patients, and further research is
needed to determine the physiological mechanisms involved
in the apparent improvement in cytoplasmic maturation of
human oocytes in vitro.

Recently, Anderiesz et al. (2000a) showed that expo-
sure of cattle and human oocytes to a 1:10 ratio of FSH:LH
(1 iu rhFSH ml–1 and 10 iu rhLH ml–1) resulted in signifi-
cantly higher developmental competence evident by in-
creased development to the blastocyst stage in vitro
compared with FSH alone (1 iu rhFSH ml–1) or no gonado-
trophins. In the human maturation system, FSH (1 iu
rhFSH ml–1 in TCM 199 + 2 mg human serum albumin
ml–1) was used for the first 24 h of culture and both 1 iu
FSH ml–1 and 10 iu LH ml–1 were included for the remain-
ing 24 h of culture to complete maturation. The biphasic
addition of gonadotrophins may enable the maturation of
LH receptors on cumulus and granulosa cells and improve
their responsiveness to LH in the second culture phase. In
these experiments, 24% of the fertilized oocytes developed
to blastocysts in vitro and no blastocysts were obtained in
maturation medium containing FSH alone or no gonado-
trophins. Further experiments are needed to confirm the
benefit of biphasic exposure of human oocytes to gonado-
trophins and to determine the mechanism responsible for
improved development of embryos. Development of
bovine blastocysts was highest (24%) in medium with an

FSH:LH ratio of 1:10, but since these blastocysts mature
within 24 h, biphasic exposure to gonadotrophins was not
examined.

It is important that evaluation of oocyte maturation in
humans includes an adequate assessment of developmen-
tal competence in vivo or in vitro. Very few studies of in
vitro matured human oocytes have included an assessment
of development to the blastocyst stage at which stage it
can be revealed that preimplantation development is 
seriously compromised (see for example Fig. 5). Barnes et
al. (1995) were the first to report successful development
to the blastocyst stage in sequential culture medium de-
signed specifically to optimize blastocyst development. A
pregnancy resulted from the transfer of a single blastocyst
after assisted hatching. However, only one of six embryos
produced in this case study was competent to develop to
the blastocyst stage. Hwu et al. (1998) demonstrated 
that embryos derived from in vitro matured oocytes when
cultured in HTF culture medium alone arrest at the 2- to
16-cell stage of development. However, when embryos are
co-cultured with human ampullary cells, 30% of zygotes
are capable of developing to the blastocyst stage. Cobo 
et al. (1999) similarly reported high rates of development 
of embryos derived from in vitro matured oocytes to the
blastocyst stage (49%) when embryos were co-cultured
with endometrial epithelial cells. These recent reports com-
pare favourably with the proportion of zygotes developing
to the blastocyst stage in the absence of co-cultured cells
from in vivo matured oocytes harvested from stimulated 
cycles.

Molecular checkpoint controls in oocyte maturation

The meiotic cell cycle is a dynamic system that functions
via an elaborate sequence of highly ordered and interre-
lated events. Mammalian oocytes are arrested at the G2-
phase of the cell cycle, specifically at the dictyate stage of
prophase in the first meiotic division. The resumption of
oocyte maturation releases oocytes from this develop-
mental arrest and re-initiates meiosis. The meiotic cell
cycle then proceeds through two consecutive M-phases,
which result in a reduction in the maternal genome. The
passage through the cell cycle is regulated by checkpoints
and molecular controls.

Checkpoint controls

Cell cycle checkpoints are genetically encoded controls
and biochemical pathways that represent an important
mechanism in cell cycle progression as they impose delays
in the cell cycle to ensure the systematic completion of
each cell cycle phase before the initiation of the next
phase (Hartwell and Weinert, 1989). In somatic cells,
there are three major checkpoints, which are present at
G1, G2 and M-phase and specifically monitor cell size,
DNA replication, DNA damage and spindle abnormalities.
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Checkpoints responsive to cell size

Human oocytes must reach a critical size before they
gain the ability to progress from the G2 to the M-phase.
Whether the inability of small oocytes to progress through
the G2-phase to M-phase is due to checkpoints responsive
to cell size is unclear. Studies by Canipari et al. (1984) 
indicate that it is cell maturity rather than cell size that
may govern meiotic progression. Alternatively, the inhibi-
tion of meiotic maturation in small oocytes may be due to
a deficiency in products required for meiotic progression.

Checkpoints responsive to DNA replication

Genes have been identified that function as checkpoints
for DNA damage and arrest, or delay cell cycle progres-
sion until DNA replication is complete (Table 7). Fulka et
al. (1994, 1995a) demonstrated that the G2 to M-phase
transition in murine oocytes is not influenced by the pres-
ence of unreplicated or replicating DNA. Although the
genes associated with the checkpoint monitoring DNA
replication have not been investigated directly in mam-
malian oocytes, current data indicate that the replication
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Table 7. Checkpoints responsive to DNA replication

Gene/gene
Checkpoints Species product Function Study

Checkpoints responsive Drosophila GRP Delays mitosis in response to inhibition Fogarty et al., 1997
to DNA replication of DNA replication

Checkpoints responsive Human p53 Prevents G1 to S-phase transition after aberrant Casenghi et al., 1999 
to DNA replication mitosis Di Leonardo et al., 

Prevents DNA re-replication 1997
Genes homologous to yeast Mouse HUS1 Function in checkpoint control to be determined Weiss et al., 1999
DNA replication checkpoint RAD1 Biological function as checkpoint remains to be Parker et al., 1998a
genes determined

Genes homologous to yeast Mouse RAD17 Shares sequence homology with S. pombe Bluyssen et al., 1999
DNA replication checkpoint Rad 17 protein: function in cell cycle checkpoints 
genes to be determined

Genes homologous to yeast Human RAD17 Shares sequence homology with S. pombe Parker et al., 1998b
DNA replication checkpoint Rad 17 protein: function in cell cycle checkpoints Bluyssen et al., 1999
genes to be determined

RAD1 Shares sequence homology with S. pombe Parker et al., 1998a
rad1+ checkpoint Marathi et al., 1998

RAD9 Shares sequence homology with S. pombe
Functions as a checkpoint for a block in Lieberman et al., 
replication 1996

Table 8. Checkpoints responsive to DNA damage

Gene/gene
Checkpoints Species product Function Study

Checkpoints responsive Drosophila GRP Involved in checkpoint pathway for DNA damage Fogarty et al., 1997
to DNA damage

Checkpoints responsive Human RAD9 Form a protein complex that functions as Volkmer and Karnitz,
to DNA damage RAD1 checkpoint for DNA damage 1999

HUS1
Checkpoints responsive Human p53 Arrests cell cycle at both the G1 and G2/M-phase Agarwal et al., 1995
to DNA damage

Checkpoints responsive Human RAD1 Involved in checkpoint control after DNA damage Freire et al., 1998
to DNA damage Parker et al., 1998b

Genes homologous to yeast Mouse HUS1 Function in checkpoint control to be determined Weiss et al., 1999
DNA damage checkpoints

Genes homologous to yeast Mouse RAD17 Share homology with S. pombe rad 17+ Bluyssen et al., 1999
DNA damage checkpoints checkpoint gene

Genes homologous to yeast Human RAD17 Share homology with S. pombe rad 17+ Parker et al., 1998b
DNA damage checkpoints checkpoint gene Bluyssen et al., 1999



responsive checkpoints that function during mitosis do not
function during oocyte meiosis (Fulka et al., 1994). On the
basis of these findings it is possible that human oocytes
also lack the checkpoints responsive to DNA replication.

Checkpoints responsive to DNA damage

Mammalian homologues to the yeast genes involved in
the DNA damage checkpoints have been identified (Table
8) and are thought to participate in the same checkpoint
functions as their yeast counterparts. Human oocytes have
not been examined directly for the presence and function
of these highly conserved DNA damage checkpoints.
However, Fulka et al. (1997) demonstrated that the pres-
ence of damaged chromatin did not prevent the progres-
sion of meiosis in fused mouse oocytes. Therefore, it
appears that DNA damage checkpoints may be either
functionally inactive or absent during mammalian oocyte
meiosis (Fulka et al., 1994, 1997).

Spindle sensitive checkpoints

Gene homologues to the spindle-sensitive checkpoints
of yeast have been isolated in somatic cells of higher
species (Table 9). However, relatively few studies have ex-
amined the presence of spindle associated checkpoints in
the meiotic cell cycle of oocytes (Fulka et al., 1994,
1995a; LeMarie-Adkins et al., 1997; Cross and Smythe,
1998). Xenopus oocytes were shown to contain a spindle
assembly checkpoint, part of which was p42 MAP kinase
(Cross and Smythe, 1998). Fulka et al. (1994, 1995b)
demonstrated the presence of checkpoints in murine 
M-phase oocytes that can delay or accelerate meiotic 
progression, but LeMarie-Adkins et al. (1997) found that
the checkpoint mechanism that functions at the metaphase
to anaphase transition was absent in mouse oocytes. 

Molecular control of oocyte maturation

Maturation promoting factor/M-phase promoting factor
(MPF)

In addition to checkpoint controls, cell cycle progres-
sion is also regulated by endogenous products. The most
common and widely studied factor in the area of cell cycle
progression is maturation promoting factor (MPF). The
original research by Masui and Markert (1971) led to the
discovery that an activity in the cytoplasm of mature 
amphibian oocytes could induce meiosis when injected
into G2 arrested frog oocytes. This activity was found to 
be MPF and it is now widely accepted that MPF is the 
primary molecule involved in meiotic cell cycle progression
and the factor responsible for M-phase induction in all 
eukaryotic cells.

MPF is a serine−threonine kinase protein heterodimer
composed of a catalytic subunit, p34cdc2, and a regulatory
subunit, cyclin B (Labbe et al., 1989; Pines and Hunter,
1989; Gautier et al., 1990). During the cell cycle, MPF activ-
ity is regulated by the phosphorylation−dephosphorylation
of p34cdc2 and its association with cyclin B (Clarke and
Karsenti, 1991). Specifically, MPF activation involves the
association of cyclin B and p34cdc2 and selective dephos-
phorylation of p34cdc2 on two residues, tyrosine 15 (Tyr15)
and threonine 14 (Thr14) (Gautier et al., 1988, 1990;
Dunphy and Newport, 1989). This dephosphorylation is
mediated by the cdc25 and nim1 genes (Russell and
Nurse, 1986; Gautier et al., 1991). In oocytes, MPF activa-
tion occurs initially at the G2 to M-phase transition.
However, before the induction of M-phase, p34cdc2 and
cyclin B are present as pre-MPF, a bound and p34cdc2

phosphorylated protein heterodimer, and are present in
this inactivated state because of interaction with the WEE1
gene (Parker et al., 1991) (Fig. 6).
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Table 9. Spindle associated checkpoints

Gene/gene
Checkpoints Species product Function Study

Spindle sensitive checkpoint Drosophila BUB3 Associates with BUB1 to form a multi-protein 
spindle assembly checkpoint Basu et al., 1998

Spindle sensitive checkpoint Drosophila BUB1 Demonstrates that BUB1 is an important 
component of spindle checkpoint in higher 
eukaryotes Basu et al., 1999

Spindle sensitive checkpoint Mouse BUB1 Checkpoint response to spindle damage Taylor and McKeon, 
Mouse p53 Checkpoint ensures the maintenance of diploidy 1997

Monitors disruption of the mitotic spindle Cross et al., 1995
Lanni and Jacks, 1998 

Spindle sensitive checkpoint Human MAD2 Monitors spindle−kinetochore attachment Li and Benezra, 1996
Human hBUB1 Component of spindle checkpoint pathway Ouyang et al., 1998

and Monitor kinetochore−microtubule interactions Jablonski et al., 1998
hBUBR1 Function in checkpoint that monitors chromosome
kinases alignment



Cyclic MPF activity is a characteristic feature of oocytes
and is attributable to the periodic activation and inactiva-
tion of the MPF heterodimer. MPF activity is detected just
before, or concomitantly with, GVBD. MPF activity in-
creases until metaphase I and decreases during the
anaphase to telophase transition. The activity increases
again until the oocyte reaches metaphase II, and is main-
tained at a high level by the interaction of cytostatic factor
(CSF) and the viral oncogene c-mos until fertilization.
Inactivation of MPF results in exit from metaphase, and
during oocyte maturation MPF inactivation occurs at the
transition of metaphase I to anaphase I and again at fertiliza-
tion. P34cdc2 phosphorylation (Dorée et al., 1989) and cyclin
degradation (Murray et al., 1989) are both required for MPF
inactivation. However, despite the fact that both events are
required for the cessation of M-phase, the proteolytic de-
struction of cyclin B is seen as the principal event associated
with the inactivation of MPF activity (Glotzer et al., 1991).

Cyclin destruction requires the presence of intact micro-
tubules and occurs via ubiquitin-mediated proteolysis, a
process that involves the attachment of ubiquitin molecules
to the cyclin and is mediated in oocytes by three enzymes,
E1, E2-C and E3 (Hershko et al., 1994). The ubiquinated
cyclin is presented to the proteasome for degradation. The
factors that activate the cyclin proteolytic pathway have not

yet been fully elucidated. However, it has been demon-
strated that cyclin degradation can be triggered by cdc2
(Felix et al., 1990; Hershko et al., 1994). Alternatively, the
calcium, calmodulin, CaM kinase II pathway presents itself
as an alternative candidate for initiating cyclin degradation
because the calcium ionophore has been demonstrated to
activate the proteasome (Kawahara and Yokosawa, 1994)
and CaM kinase II activates cyclin destruction and mos and
CSF degradation (Whitaker, 1996). The calcium, calmod-
ulin, CaM kinase II pathway probably represents the mech-
anism by which MPF is inactivated at fertilization. 

MPF is activated in vivo at the onset of oocyte matura-
tion in response to an endogenous LH surge. Mammalian
oocytes resume meiotic maturation spontaneously in vitro
upon liberation from the ovarian follicle. Our studies show
that in vitro maturation of human oocytes activates MPF
activity, as evidenced by the increase in histone H1 kinase
activity at metaphase II (Fig. 7). This finding demonstrates
that MPF is activated in vitro in a manner similar to that for
oocytes in vivo. 

c-mos

c-mos is a proto-oncogene originally identified as the
transforming gene of the Moloney murine sarcoma virus
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Fig. 6. Diagrammatic representation of the molecular structure and activation of maturation promoting factor (MPF). MPF is shown as a
heterodimer composed of p34cdc2 and cyclin B. In its pre-MPF state, the MPF heterodimer is phosphorylated on tyrosine 15 (Tyr15) and
threonine 14 (Thr14). Threonine 14 and tyrosine 15 phosphorylation is due to the action of hypo-phosphorylated wee1. Then activation
of MPF is primarily due to the interplay between cdc25 and nim1 and wee1. The phosphorylated form of cdc25 is responsible for 
dephosphorylating the cdc2 protein on Tyr15 and Thr14, thus activating MPF. Hypo-phosphorylated wee1 prevents MPF activation by
maintaining the Tyr15 and Thr14 residues of the cdc2 protein in a phosphorylated form. Nim1 maintains wee1 in a hyper-phosphorylated
form that is unable to phosphorylate the Tyr15 and Thr14 residues of the cdc2 protein and thereby prevents wee1 from holding MPF in
a phosphorylated and inactive form. The active MPF molecule is dephosphorylated on Tyr15 and Thr14 of the cdc2 protein and the 
cyclin protein is phosphorylated. The active form of MPF displays cdc2 kinase activity, known as histone H1 kinase activity.



(Frankel and Fischinger, 1976). The c-mos proto-oncogene
encodes a serine−threonine protein kinase (mos), which is
expressed in oocytes. In the oocyte, mos is involved in
several aspects of oocyte maturation. Mos has been demon-
strated to phosphorylate cyclin B (Roy et al., 1990) and
thereby affects cyclin stability (O’Keefe et al., 1991; Xu et
al., 1992) and MPF activity. As part of the CSF complex,
mos is involved in the maintenance of metaphase II arrest
in mammalian oocytes and similarly, in Xenopus oocytes,
mos has been implicated in the pathway that is involved in
metaphase arrest (Kosako et al., 1994). In Xenopus, murine
and bovine oocytes, mos activates mitogen activated 
protein (MAP) kinase (Nebreda and Hunt, 1993; Fissore 
et al., 1996; Verlhac et al., 1996). In addition, mos initi-
ates and regulates meiotic maturation in Xenopus oocytes
(Sagata et al., 1988; Roy et al., 1996) and has been shown
to participate in, but is not essential for, murine oocyte
maturation (O’Keefe et al., 1989; Araki et al., 1996).
However, it is important for murine oocyte spindle and
chromosome morphology, assembly and function (Zhao 
et al., 1991; Verlhac et al., 1996).

Mos has been detected in human oocytes (Pal et al.,
1994; Heikinheimo et al., 1995, 1996) and its expression
is restricted to the oocyte, as both the mos protein and
mRNA are degraded during embryonic development
(Heikinheimo et al., 1995). Although the action of mos
during human oocyte maturation in vitro has not been 
investigated directly, it is likely to play a role in the regula-
tion of meiotic maturation by interacting with cyclin B and
CSF to stabilize MPF and maintain meiotic arrest, as well
as participate in the activation of MAP kinase.

Mitogen activated protein (MAP) kinase

MAP kinase, which is alternatively known as extra-
cellular regulated kinase (ERK), is a serine−threonine kinase 
that is activated via a protein kinase cascade at the onset

of oocyte maturation in Xenopus (Haccard et al., 1990),
mouse (Verlhac et al., 1993) and pig (Inoue et al., 1995)
oocytes. MAP kinase activity (ERK) is associated with the
induction of meiosis in Xenopus oocytes (Haccard et al.,
1995) and although activated at the onset of oocyte matu-
ration in mice, MAP kinase is not necessarily required for
GVBD in mouse oocytes (Sun et al., 1999a). However,
MAP kinase activity is associated with a plethora of cyto-
plasmic events including the regulation of microtubule 
dynamics, spindle assembly and chromosome condensa-
tion (Verlhac et al., 1993, 1994; Dedieu et al., 1996). In 
most oocytes (clam, starfish and ascidian oocytes are the
notable exceptions), high concentrations of MAP kinase
are maintained during meiotic progression to metaphase II
and concentrations decrease after fertilization (Ferrell et
al., 1991; Dedieu et al., 1996).

In human oocytes, p42ERK2 is the main form of MAP
kinase (Sun et al., 1999b). The activation pattern of MAP
kinase in human oocytes is reminiscent of MAP kinase 
activity in other mammalian species such as pigs and
mice. In humans, MAP kinase is inactive in immature
oocytes, active in mature oocytes and the activity de-
creases after pronuclei formation after fertilization (Sun 
et al., 1999b). Therefore, although not widely studied in
human oocytes, it appears that the MAP kinase pattern of
activation in the cell cycle is similar to that of other 
mammalian species and, therefore, MAP kinase may serve
a similar function during human oocyte maturation.

Transcription and translation

During the period of oocyte growth a large number of
genes are transcribed and translated (Schultz, 1986). Protein
translation actively continues during oocyte maturation
and the accumulated transcripts and macromolecules are
subsequently used for meiotic and early embryonic devel-
opmental events (Wickramasinghe and Albertini, 1993;
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ous gonadotrophin treatment and the metaphase II oocytes were matured in vitro.



Fair et al., 1995). Thus, it is commonly accepted that 
transcription and translation play an integral role in meiotic
progression and subsequent embryo developmental 
competence.

Although it is clear that immature human oocytes 
retrieved from unstimulated ovaries can mature from the

GV stage to metaphase II in vitro, their subsequent embry-
onic development appears to be severely compromised
(Trounson et al., 1994, 1996, 1998; Barnes et al., 1996;
Moor et al., 1998). It has been suggested that the reduced
developmental potential in human oocytes matured in
vitro may be attributable to sub-optimal culture condi-
tions, incomplete oocyte growth or abnormal cytoplasmic
maturation (Moor et al., 1998).

Studies on protein content have revealed that in vitro
matured metaphase II human oocytes, derived from
ovaries of untreated women (IVM group), display a reduced
protein content compared with in vivo matured metaphase
II oocytes retrieved from ovaries of gonadotrophin treated
patients (VIVO group). The one-dimensional protein 
profiles of single human metaphase II stage oocytes from
the IVM and VIVO groups following silver staining are pre-
sented (Fig. 8). The human IVM oocytes have a reduced
protein content compared with the VIVO group. Areas 1,
3, 4, 5 and 6 represent regions in which there appears to
be an absence of particular proteins. Isoelectric focusing
and SDS-PAGE were used in combination to isolate and
identify further variations in particular oocyte proteins.
When the protein profiles of IVM and VIVO human
oocytes were examined by two-dimensional SDS-PAGE
there were nine specific human oocyte proteins expressed
in the VIVO group that were not detected in the IVM
group. A number of proteins cannot be detected in human
oocytes matured in vitro and these are likely to include
molecules essential for cell cycle regulation and normal
embryo development. A reduction in oocyte protein 
content after in vitro maturation has also been reported in
bovine oocytes (Kastrop et al., 1991). Whether these 
protein deficiencies are attributable to transcriptional 
inadequacies or translational defects is currently unknown. 

Measurements of protein synthesis (Schultz et al., 1979;
Salustri and Matrinozzi, 1983) reveal that oocytes cannot
synthesize all the proteins they require during the growth
phase (Schultz, 1986). Part of the protein content of the
oocyte may be obtained from proteins taken up from
serum (Glass, 1971). Alternatively, the follicular cells 
surrounding the oocyte could contribute to the protein
content via a gap junction mediated transfer of molecules
between the granulosa cells and the oocyte. Premature 
liberation of oocytes from small growing follicles may 
prevent the accumulation of follicular fluid proteins or 
cumulus cell transfer of proteins essential for developmental
competence.

The available data indicate that in vitro matured human
oocytes have a reduced protein content and the isolation
and identification of the specific proteins that are either ab-
sent or at lower than required concentrations are needed.

Control of progression of maturation in vitro and
developmental competence

Human oocytes appear to be unsynchronized in their 
response to maturational signals in vitro. This proposal is
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best demonstrated by the data reported by Trounson et al.
(1994, 1998). A small proportion of oocytes (15–20%) will
extrude the first polar body by 24 h of culture, and by
43–47 h, 60% have matured to metaphase II. Similar data
have been reported by Cha and Chian (1998) for oocytes
obtained from untreated PCOS patients (Fig. 3). As discussed
earlier, the factor responsible for the resumption of meiotic
maturation is MPF and its associated p34cdc2 kinase activ-
ity is responsible for the cascade of events associated with
meiotic maturation. The serine−threonine protein kinase
inhibitor 6-dimethylaminopurine (DMAP) blocks GVBD
and cell cycle progression in immature oocytes by inhibit-
ing the post-translational dephosphorylation of p34cdc2

that triggers MPF activity (Jessus et al., 1991), but does not
interfere with protein synthesis (Rime et al., 1989; Fulka 
et al., 1991). 

Studies by Anderiesz et al. (2000b) have shown that
DMAP in culture medium will reversibly block GVBD of
mouse and human oocytes for 7 and 24 h, respectively.
Removal of DMAP and subsequent culture in medium
without DMAP results in the same timing of formation of
metaphase II oocytes as the untreated controls (Anderiesz
et al., 2000b). It was hypothesized that DMAP treatment
may synchronize nuclear maturational events in oocytes
but there was no evidence of this effect in either mouse or
human oocytes. DMAP treatment of human oocytes had
no effect on fertilization or development to the blastocyst
stage but decreased the developmental capacity of mouse
embryos.

Prospects for the future application of human
oocyte maturation in vitro

The recovery and maturation of oocytes from PCOS 
patients remains a very suitable alternative to surgery or
diathermy of ovaries, for the establishment of pregnancy in
these infertile women. It is apparent that large numbers of
oocytes can be recovered by ultrasound-guided follicular
aspiration and a reasonable pregnancy rate can be
achieved when large numbers of unselected pronuclear or
early cleavage stage embryos are transferred to the patients
(Cha and Chian, 1998). The selection of the more develop-
mentally competent embryos by extended culture (day 3
to day 6) and preimplantation genetic diagnosis to remove
embryo aneuploidies would reduce the number of embryos
transferred but still retain an acceptable pregnancy rate.
Clearly, improvements can be made to the maturation
conditions for retention of the potential developmental
competence of immature oocytes and this aim should 
continue to be a priority for research on oocyte matura-
tion. The benefits for PCOS patients is to avoid the need to
administer fertility drugs to induce superovulation for 
mature oocyte collection and IVF. PCOS patients are 
susceptible to OHSS (Danninger and Feichtinger, 1997)
and recovery of immature oocytes and their maturation 
in vitro remains a very attractive treatment strategy for
pregnancy.

The recovery of immature oocytes from patients who
have been treated with high doses of gonadotrophins 
for IVF and in whom administration of hCG has been 
purposefully withheld is attractive because LH and hCG
are potent inducers of vascular endothelial growth factor
(VEGF), which is closely related to the initiation and exac-
erbation of OHSS. Follicular aspiration and recovery of
immature oocytes has already been successful in such a
case (Jaroudi et al., 1997). This option could be adopted in
clinical IVF to prevent the occurrence of OHSS. 

It is also beneficial to recover oocytes from small non-
dominant follicles in natural ovulatory cycles, in patients
that have had minimal ovarian stimulation with
clomiphene citrate (Thornton et al., 1998; this review) or in
PCOS patients with irregular menstrual cycles given prog-
esterone for withdrawal bleeding, hCG at 10–14 days after
progesterone and from which oocytes are recovered 36 h
later (Chian et al., 1999a,b, 2000). Oocytes from these
small follicles (down to 7 mm diameter) appear to be de-
velopmentally competent and may contribute to successful
pregnancy and development to term. This will be a new
application for in vitro maturation and is obviously clini-
cally useful for IVF patients wishing to avoid treatment with
large doses of FSH, or for patients for whom superovulation
treatment poses an unacceptable financial burden.

In the cases of recovering immature oocytes from folli-
cles of patients at the normal time of ovulation, uterine re-
ceptivity for implantation and development will be similar
to that for normal IVF patients or naturally cyclic women.
The conditions required for uterine receptivity in anovula-
tory PCOS patients is not known and the use of proges-
terone for withdrawal bleeding may enhance implantation
rates after embryo transfer. 
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