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The specificity of RNA-guided nucleases has gathered

considerable interest as they become broadly applied to basic

research and therapeutic development. Reports of the simple

generation of animal models and genome engineering of cells

raised questions about targeting precision. Conflicting early

reports led the field to believe that CRISPR/Cas9 system was

promiscuous, leading to a variety of strategies for improving

specificity and increasingly sensitive methods to detect off-

target events. However, other studies have suggested that

CRISPR/Cas9 is a highly specific genome-editing tool. This

review will focus on deciphering and interpreting these

seemingly opposing claims.
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First generation methods to detect potential
off-target sites: computational prediction and
in vitro screens
The RNA-guided clustered, regularly interspaced, short

palindromic repeat (CRISPR)/CRISPR-associated pro-

tein 9 (Cas9) endonuclease system has taken the genome

editing field by storm. The complex consists of the Cas9

nuclease protein and a single guide RNA (sgRNA) that

targets a specific DNA sequence through RNA-DNA

base pairing (Figure 1) [1]. The most widely used

Cas9, derived from Streptococcus pyogenes, targets a 20 nu-

cleotide DNA sequence immediately followed by a 50-
NGG-30 protospacer-adjacent motif (PAM) [1]. The first

studies of Cas9 specificity focused on off-target cleavage

activity at genomic regions that were identified by

computational prediction based on similarity to the target

sequence [2��,3��,4,5], in vitro cleavage assays [6], or high-

throughput reporter screens [7] (Figure 2, top). Predicted

sites were analyzed for cleavage using a PCR-based

assay. Some studies suggested high frequency of

CRISPR/Cas9 activity [2��,5], which alarmed the entire
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field and established expectations for follow-up studies to

identify high off-target activity. However, other studies

found modest or low off-target activity at predicted

genomic sites [3��,6] (Table 1). Results varied widely,

even within a single research study. For example, among

the six target sites tested by Fu and colleagues [2��], no

off-target sites were identified for two targets (RNF2

and FANCF), only one off-target site was detected for

EMX1, while 4, 12 and 7 off-target sites were observed

for VEGFA sites 1, 2 and 3, respectively. Thus, there

was a clear distinction between very high target speci-

ficity of some sgRNAs (RNF2, FANCF), while others

were very promiscuous (VEGFA sites 2 and 3) (Table 1).

Despite this variance, the promiscuous VEGFA sgRNAs

became the archetypal poster child for off-target activity

and would be used in many subsequent studies. Al-

though it certainly makes sense to use promiscuous

sgRNAs to test new methods for off-target site detec-

tion and avoidance, one should not assume that

CRISPR/Cas9 per se has high off-target activity. Perhaps

the most accurate conclusion from these early studies

would be that CRISPR/Cas9 has the potential to be

highly specific or lead to high-frequency off-target ac-

tivity depending on the choice of sgRNA.

This conclusion notwithstanding, concerns about spec-

ificity led to several strategies to reduce off-target

effects while retaining efficient on-target cleavage

(reviewed in [8]). Heterodimeric Cas9 variants, such

as paired Cas9 nickases and dimeric Cas9-FokI

nucleases rely on targeting via two sgRNAs significantly

enhanced specificity [9,10]. Modified sgRNAs can ef-

fectively reduce off-target activity by, paradoxically, the

addition of two extra guanine nucleotides to the 50

end (GGN20-NGG) of the traditional sgRNA design

(GN19-NGG) [4], or the use of truncated sgRNAs

(GN17-NGGor GN18-NGG) [11,12]. In addition to mis-

matches, some sgRNAs can also tolerate DNA sequences

with an extra base (DNA bulge) or a missing base (sgRNA

bulge) [13��] (Figure 3).

There is an expanding list of algorithms available that

search the genome for similar sites adjacent to the

Cas9 PAM, allowing a certain number of mismatches

to the target site [3��,14�,15–17]. However, since pre-

dictive first generation methods could only survey a

subset of potential off-target sites, a much larger num-

ber of off-target sites in the entire genome was

expected. This assumption highlighted the need for

unbiased and genome-wide detection of Cas9 off-target

activity.
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CRISPR/Cas9 specificity is dependent on its sgRNA. The Cas9 protein

(pink) complexes with a single guide RNA (sgRNA, red) at a DNA

target site that contains a protospacer adjacent motif (PAM, blue box).

The 50 end of the sgRNA forms a 20-bp heteroduplex with one strand

of the DNA. The binding or cleavage events facilitated by the Cas9/

sgRNA complex can be categorized as highly specific (no off-targets),

intermediate (1 to 5 off-targets) and promiscuous (6 or more off-

targets).
Second generation methods: genome-wide
binding specificity of nuclease-inactive dCas9
The catalytically inactive dCas9 has been used as a

simple programmable DNA-binding platform for many

applications including transcriptional activation and re-

pression (CRISPRa and CRISPRi, respectively) [18–23].

Since dCas9 regulators do not possess nuclease activity,

several groups performed ChIP-seq (Chromatin Immu-

noprecipitation followed by high throughput sequencing)

to determine CRISPR/dCas9 binding specificity on a

genome-wide scale [24–27] (Figure 2, middle). Virtually

all studies observed the highest intensity binding at the

target site, suggesting a strong binding preference for

the target. However, less-intense off-target sites were

detected varying from a few to hundreds or thousands

of binding sites. The wide variation in off-target sites

observed between different groups was likely due to

differences in their experimental and analytical methods,

in addition to any differences between individual

sgRNAs. Off-target sites often contained motifs that were

identical to the PAM proximal target sequence. Overall,

these studies suggested that ChIP-seq identifies stable

dCas9 binding to genomic target sites as well as transient

binding of dCas9 to regions with partial complementarity

as it scans the genome. Transient binding of Cas9 and

dCas9 had been demonstrated in vitro and, interestingly,

DNA cleavage only occurred at target sites and not at sites

of transient interaction [28]. The lack of cleavage at

transient sites in vitro was borne out in vivo. In fact, some
www.sciencedirect.com 
studies were only able to observe cleavage at none or one

off-target site [24,25,27] (Table 1).

However, subsequent third-generation methods would

show that the near-perfect specificity of dCas9 in ChIP-

seq assays might be an underestimation of the true off-

target behavior of catalytically active Cas9. This discrep-

ancy might be attributed to different determinants for

Cas9 binding and nuclease activity, or structural differ-

ences between Cas9 and dCas9. Indeed a structure of

dCas9 bound to DNA showed the HNH endonuclease

domain located away from the scissile phosphate group of

the target DNA strand, suggesting activity-dependent

conformational rearrangements [29]. However, the results

of these studies are still valid for all dCas9 applications,

and generally showed that binding of dCas9 was very

highly specific.

Third generation methods: genome-wide
detection of Cas9-induced double strand
breaks
Double strand breaks (DSB) in the DNA of most species

can be repaired by a highly efficient but error-prone

nonhomologous end-joining pathway, leading to the ac-

cumulation of mutations at the breakpoint. Therefore,

the most intuitive and comprehensive approach to iden-

tify DSB induced by catalytically active Cas9 across the

whole genome is to search for mutations using whole

genome sequencing (WGS, Figure 2, bottom). WGS of

induced pluripotent stem cell (iPSC) clones generated by

CRISPR/Cas9 treatment suggested high specificity of

CRISPR/Cas9 [30,31]. In addition to the on-target site,

one WGS study identified one high-frequency off-target

that was not present in the reference genome, but rather

created by a single nucleotide variation in that particular

iPSC line [32]. This brings up the issue of sequence

variation between individual genomes that will need to

be addressed moving forward. Each genome is unique,

possibly leading to off-targets that are not present in one

individual but may be present in another. However, while

WGS can readily detect high-frequency events, it is

limited by the need of extensive sequencing depth.

The typical 30x-60x coverage of the genome is not suffi-

cient to identify low-level mutations. Digenome-seq also

relies on WGS sequencing of nuclease digested genomic

DNA, but Cas9-induced insertion and deletions are iden-

tified by their sequence signature rather by divergence

from the reference genome [33]. However, sequencing

depth and cost remains a limiting factor, especially when

using non-human cells.

The need for accurate and unbiased detection of Cas9-

induced off-targets on a genome wide scale has led

researchers to adopt and develop new methods (reviewed

in [8,34]). Integrase-deficient lentivirus vectors (IDLV)

were able to identify off-target sites by integrating

a marker gene at Cas9-induced DSBs [35], based on
Current Opinion in Chemical Biology 2015, 29:72–78
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Figure 2
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A diversity of methods has been used to predict or detect off-target sites. Each successive methodology attempted to be less biased and

interrogate more of the genome than the previous generation.
methods developed earlier for zinc finger nucleases [36].

Depending on sgRNA used, detected off-targets varied

from zero to seven (Table 1), but no off-target sites were

observed with paired Cas9 nickases. A similar approach,

genome-wide unbiased identification of DSBs enabled

by sequencing (GUIDE-seq), identifies DSB by inserting

small barcoded pieces of DNA followed by high through-

put sequencing [37]. Among seven sgRNAs, off-target

activity varied widely from zero (RNF2) to as many as

151 off-targets (VEGFA site 2) (Table 1). Thus, these

studies recapitulated the same basic message that we

learned from the first generation methods, that

CRISPR/Cas9 cleavage has the potential for high or

low specificity depending on the sgRNA.

In addition to insertion and deletion mutations, Cas9 also

induces chromosomal translocations between breakpoints
Current Opinion in Chemical Biology 2015, 29:72–78 
at on-target and off-target sites and double strand break

hotspots that are independent of Cas9. Translocation

events can be determined by several methods, such as

GUIDE-seq [37] and high-throughput, genome-wide,

translocation sequencing (HTGTS) [38]. No transloca-

tion events were detected by HTGTS for two of the four

sgRNAs targeting the RAG1 locus. By contrast, a large

number of translocations was observed with the promiscu-

ous sgRNA (VEGFA site 2), whose high off target activity

has previously been reported [2��,33,37] (Table 1). DSB

hot spots can vary between cell types, which may contrib-

ute to cell-type specific off-target effects. Recently, DSB

hotspots of individual genomes have been mapped reveal-

ing common and unique hotspots [39]. It will be interesting

to define determinants of DSB hotspots to reduce the

risk of deleterious consequences by irreversible changes

to the genetic information.
www.sciencedirect.com
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Table 1

Categorized sgRNA specificity

Study Off-target

prediction/detection

method

Validation

ratea
sgRNA specificity based on validated off-target activity

Highly specific

(0 off-targets)

Intermediate

(1–5

off-targets)

Promiscuous

(>5 off-targets)

Computational

prediction &

in vitro screen

Mali et al. 2013 Reporter gene

screen

<1% n.d.b (artificial

target sites)

Cho et al. 2013 Computational &

exome capture

<1% C4BPB

CCR5

Fu et al. 2013 Computational <1% RNF2

FANCF

EMX1

VEGFA site 1

VEGFA site

2 (12)

VEGFA site

3 (7)

Hsu et al. 2013 Computational <1% EMX site 1

EMX site 3

Pattanayak

et al. 2013

Computational &

in vitro screen

<1% CLTA4 (3)

Cradick et al.

2013

Computational <1% 9 sgRNAsc 10 sgRNAsc

Lin et al. 2014 Computational

(gRNA and DNA

bulges)

<1% n.d.b (focus

on

DNA/RNA

bulges, not

mismatches)

Genome-wide

detection of

dCas9 binding

Wu et al. 2014 ChIP-seq <1%d Nonog-sg3

Phc1-sg1

Phc1-sg2

Nanog-sg2

Cecnic et al.

2014

ChIP-seq <1%d sgp53-3 sgp53-1

Kuscu et al.

2014

ChIP-seq <1%d

O’Geen et al.

2015

ChIP-seq &

sequence

capture

<1%d S1 S2

Gersbach

et al. 2015

ChIP-seq &

RNA-seq

3–17% IL1RN

HBG1/2

Genome-wide

detection of

DSBs and

NHEJ

Tsai et al. 2015 GUIDE-seq 80% RNF2 HEK

293 site 2

HEK

293 site 3

VEGFA site

1 (21)

VEGFA site

2 (151)

VEGFA site

3 (59)

EMX1 (15)

FANCF (8)

HEK293

site 1 (9)

HEK 293

site 4 (133)

Kim et al. 2015 Digenome-seq 7–10% HBB VEGFA (81)

Ran et al. 2015 BLESS 14–41% Pcsk9 EMX1-sg1 EMX-sg2 (12)

Frock et al. 2015 HTGTS (focus

on translocation)

n.d.b RAG1B RAG1A

Wang et al. 2015 IDLV 100%e WAS CR-3

TAT CR-4

TAT CR-6

WAS CR-5

TAT CR-1

WAS CR-4

(12)

a Validation rate serves only as a reference and is highly dependent on the sensitivity of the method, the number of sgRNAs tested, and the number of

potential off-target sites used for validation.
b n.d., not determined.
c Only one potential off-target site was examined.
d ChIP-seq detection is based on DNA binding while validation is based on DNA cleavage activity. Both methods have different specificity

determinants and cannot be directly compared.
e Additional sites that were not identified by IDLV were validated after computational prediction.

www.sciencedirect.com Current Opinion in Chemical Biology 2015, 29:72–78
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Figure 3
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Some sgRNAs allow binding or cleavage at variants of the target site.

In addition to single-base mismatches (a), some sgRNAs can tolerate

DNA sequences with an extra base ((b), DNA bulge) or a missing base

((c), sgRNA bulge).
Conclusions and prospectus
It is evident that major differences in CRISPR/Cas9

specificity arise from sgRNAs themselves. Although some

sgRNAs have the potential to be highly specific, others

are promiscuous leading to hundreds of off-targets

(Table 1). Therefore, it would seem inappropriate to

suggest that the CRISPR/Cas9 platform per se is specific

or non-specific. The current challenge is to anticipate

which sgRNA will provide high on-target activity while

having minimal off-target effects. In this regard, CRISPR/

Cas9 maintains a technological advantage over zinc finger

and transcription activator-like effector (TALE) proteins,

which can also be highly specific but require more effort

to assembly each new protein to test.

A deeper analysis of Cas9 orthologs from other species

may reveal greater or less specificity for a given target site.

Cas9 orthologs often vary in target site and PAM require-

ments [22,40,41�]. The genome-wide nuclease activity of

the S. aureus Cas9 was assessed using BLESS (direct in
situ breaks labeling, enrichment on streptavidin and next-

generation sequencing) [41�]. Interestingly, SaCas9 dis-

played higher specificity than SpCas9. Furthermore, no

off-target activity was observed in the mouse neuroblas-

toma cell line or mouse liver after AAV delivery of SaCas9

and Pcsk9 sgRNAs [41�]. Further analysis is also required

to understand how chromatin structure and sequence

context contribute to target site accessibility, as well

as on-target and off-target site recognition. Off-target

binding correlated with DNase I hypersensitive sites

(DHS) characteristic for accessible chromatin regions,
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and preferentially localized to regions void of DNA

methylation [24–26]. Sequence features that contribute

to sgRNA efficiencies have been systematically assessed

in order to construct a predictive sequence model for the

design of CRISPR/Cas9 knockout experiments [14�,42].

There was a distinct preference for a guanine nucleotide

immediately preceding the PAM site and nucleotide

composition downstream of the PAM site also contribut-

ed to sgRNA efficiency. More recently, sequence context

on sgRNA efficiency was also assessed for CRISPRi/

CRISPRa [14�]. These studies again found the sequence

preference of CRISPRi/CRISPRa to be distinctly differ-

ent from CRISPR knockout experiments. Although these

models are not perfect, they are a step towards improve-

ment of sgRNA design for gene editing and regulation.

Solving the challenge of optimal sgRNA selection will

likely require large data sets of many sgRNAs in different

cell types. Cell types for which large amounts of genomic

data are already available, such as the ENCODE Tier

1 cell lines [43], would be more informative than the

HEK293 and U2OS cells used frequently in the past.

The number of off-target events that could be tolerated

by any sgRNA may also depend on the application.

Changes to the genome by a Cas9 endonuclease are

irreversible at off-target sites, which could lead to dele-

terious effects. One could argue that a single off-target

site is too much when genomic DNA is permanently

altered. Introducing CRISPR/Cas9 into a patient for gene

therapy, with the potential to modify millions of cells and

cell descendants, would require the highest specificity.

However, there may be few off-target events in any single

Cas9-treated iPSC, which could be clonally expanded and

off-target events verified by WGS of that one genome. A

modest number of off-target bindings might also be

acceptable when using dCas9 to regulate transcription

without altering the genetic content [18–20,23], even in

clinical applications.

In conclusion, the current data suggest that careful selec-

tion of the sgRNA used with SpCas9 can produce a very

highly specific DNA nuclease that would be appropriate

for most if not all applications. Today’s computation

design programs can help find target sites with minimal

similarity to off-targets in a reference genome, but em-

pirical testing in the appropriate cell type will likely be

required to ensure optimal specificity performance. With

more data sets of sgRNAs with SpCas9 and others in well

annotated genomes and epigenomes, improved compu-

tational approaches will likely reduce the need for

empirical testing to produce specific CRISPR/Cas9

nucleases and gene regulators.
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