The Economics of Monetary Unions

Giovanni Piersanti

Università di Teramo

December 2020

Giovanni Piersanti (Institute)

The Economics of Monetary Unions

December 2020 1 / 79

• EMU sustainability & survival a highly debated issue in academia and international policy circles after the 2007/2008 crisis.

- EMU sustainability & survival a highly debated issue in academia and international policy circles after the 2007/2008 crisis.
- Key point: EMU ∈ Incomplete monetary Union (IMU) → fears of future collapse & sustainability.

- EMU sustainability & survival a highly debated issue in academia and international policy circles after the 2007/2008 crisis.
- Key point: EMU ∈ Incomplete monetary Union (IMU) → fears of future collapse & sustainability.
- Main reasons ⊂ 2 points: 1) costs & benefits ∈ Monetary Unions (MUs) + costs ⇐ EMU ∈ IMU; 2) problems ⇐ EMU management and Euro (€) crisis.

- EMU sustainability & survival a highly debated issue in academia and international policy circles after the 2007/2008 crisis.
- Key point: EMU ∈ Incomplete monetary Union (IMU) → fears of future collapse & sustainability.
- Main reasons ⊂ 2 points: 1) costs & benefits ∈ Monetary Unions (MUs) + costs ⇐= EMU ∈ IMU; 2) problems ⇐= EMU management and Euro (€) crisis.
- Costs & benefits MUs → Eurozone (EZ) incompleteness issue and different way to switch EMU into European Political Union, i.e., United States of Europe (USE).

- EMU sustainability & survival a highly debated issue in academia and international policy circles after the 2007/2008 crisis.
- Key point: EMU ∈ Incomplete monetary Union (IMU) → fears of future collapse & sustainability.
- Main reasons ⊂ 2 points: 1) costs & benefits ∈ Monetary Unions (MUs) + costs ⇐ EMU ∈ IMU; 2) problems ⇐ EMU management and Euro (€) crisis.
- Costs & benefits MUs → Eurozone (EZ) incompleteness issue and different way to switch EMU into European Political Union, i.e., United States of Europe (USE).
- EMU management \rightarrow deep roots \in crisis.

OCA theory

MUs literature ⊂ Optimum Currency Areas (OCA) theory, where: i)
 'Currency Area' is a territory ⊂ regional or national entities with 1 currency, or several currencies with fixed rates; ii)
 'Optimum' is the ability to get automatic internal (full employment and price stability) and external (balance of payment) equilibrium.

OCA theory

- MUs literature ⊂ Optimum Currency Areas (OCA) theory, where: i)
 'Currency Area' is a territory ⊂ regional or national entities with 1 currency, or several currencies with fixed rates; ii) 'Optimum' is the ability to get automatic internal (full employment and price stability) and external (balance of payment) equilibrium.
- OCA ⊂ 2 approach: 1) traditional (Keynesian) approach (Mundell, 1961; McKinnon, 1963; Kenen, 1969); 2) 'new' (monetarist) approach (Frankel-Rose, 1996; Rose, 2000; Alesina et al., 2001).

OCA theory

- MUs literature ⊂ Optimum Currency Areas (OCA) theory, where: i)
 'Currency Area' is a territory ⊂ regional or national entities with 1 currency, or several currencies with fixed rates; ii) 'Optimum' is the ability to get automatic internal (full employment and price stability) and external (balance of payment) equilibrium.
- OCA ⊂ 2 approach: 1) traditional (Keynesian) approach (Mundell, 1961; McKinnon, 1963; Kenen, 1969); 2) 'new' (monetarist) approach (Frankel-Rose, 1996; Rose, 2000; Alesina et al., 2001).
- OCA theory \rightarrow conditions ensuring benefits (B) \in MU > costs (C), i.e., B > C.

OCA theory

- MUs literature ⊂ Optimum Currency Areas (OCA) theory, where: i)
 'Currency Area' is a territory ⊂ regional or national entities with 1 currency, or several currencies with fixed rates; ii) 'Optimum' is the ability to get automatic internal (full employment and price stability) and external (balance of payment) equilibrium.
- OCA ⊂ 2 approach: 1) traditional (Keynesian) approach (Mundell, 1961; McKinnon, 1963; Kenen, 1969); 2) 'new' (monetarist) approach (Frankel-Rose, 1996; Rose, 2000; Alesina et al., 2001).
- OCA theory \rightarrow conditions ensuring benefits (B) \in MU > costs (C), i.e., B > C.
- Traditional (Keynesian) approach focus more on the cost side, identifying the economic, financial and institutional factors mitigating C and make MU good for its member states.

OCA theory

- MUs literature ⊂ Optimum Currency Areas (OCA) theory, where: i)
 'Currency Area' is a territory ⊂ regional or national entities with 1 currency, or several currencies with fixed rates; ii) 'Optimum' is the ability to get automatic internal (full employment and price stability) and external (balance of payment) equilibrium.
- OCA ⊂ 2 approach: 1) traditional (Keynesian) approach (Mundell, 1961; McKinnon, 1963; Kenen, 1969); 2) 'new' (monetarist) approach (Frankel-Rose, 1996; Rose, 2000; Alesina et al., 2001).
- OCA theory \rightarrow conditions ensuring benefits (B) \in MU > costs (C), i.e., B > C.
- Traditional (Keynesian) approach focus more on the cost side, identifying the economic, financial and institutional factors mitigating C and make MU good for its member states.
- 'New' (monetarist) approach focus more on the benefit side ∈ MU, finding economic, financial and institutional factor driving up trade & B among member States.

Giovanni Piersanti (Institute)

 Costs ∈ MU ⊆ traditional OCA theory and related to macroeconomic management of economy.

Example

Costs

- Costs ∈ MU ⊆ traditional OCA theory and related to macroeconomic management of economy.
- Costs loss relevant policy instrument: independent monetary policy (MP).

Example

Costs

Costs

- Costs ∈ MU ⊆ traditional OCA theory and related to macroeconomic management of economy.
- Costs loss relevant policy instrument: independent monetary policy (MP).
- It ⇒ giving up (a) own central bank (CB); (b) fixing money stock (M), short-term interest rate (i), exchange rate (E), and budget deficit financing (d).

Example

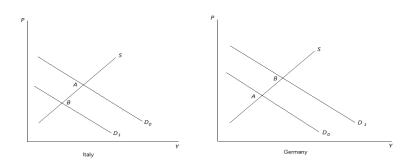
- Costs ∈ MU ⊆ traditional OCA theory and related to macroeconomic management of economy.
- Costs loss relevant policy instrument: independent monetary policy (MP).
- It ⇒ giving up (a) own central bank (CB); (b) fixing money stock (M), short-term interest rate (i), exchange rate (E), and budget deficit financing (d).

Example

Costs

: countries \in MU

 Take 2 countries ∈ MU, e.g., Italy (IT) and Germany (DE), and a shock shifting consumers preferences towards DE goods.


- Costs ∈ MU ⊆ traditional OCA theory and related to macroeconomic management of economy.
- Costs loss relevant policy instrument: independent monetary policy (MP).
- It ⇒ giving up (a) own central bank (CB); (b) fixing money stock (M), short-term interest rate (i), exchange rate (E), and budget deficit financing (d).

Example

Costs

- Take 2 countries ∈ MU, e.g., Italy (IT) and Germany (DE), and a shock shifting consumers preferences towards DE goods.
- Effects (asymmetric & permanent shock) on aggregate demand (D) 2 countries in Fig. 1.

Costs

Figure 1. Asymmetric shock in MU

Giovanni Piersanti (Institute)

The Economics of Monetary Unions

• **Result**: output (Y) and price (p) reduce in IT and increase in (DE) $(A \rightarrow B)$. **Problem**: adjustment mechanism to disequilibria.

- **Result**: output (Y) and price (p) reduce in IT and increase in (DE) $(A \rightarrow B)$. **Problem**: adjustment mechanism to disequilibria.
- Automatic adjustment if: 1) prices (p) & wages (w) fully flexible; 2) labour (L) mobility high.


- **Result**: output (Y) and price (p) reduce in IT and increase in (DE) $(A \rightarrow B)$. **Problem**: adjustment mechanism to disequilibria.
- Automatic adjustment if: 1) prices (p) & wages (w) fully flexible; 2) labour (L) mobility high.
- If p & w flexible, output (Y) and unemployment (U) changes 2 countries ⇒ (p & w) ↓ IT and ↑ DE; supply (S) IT right-downward and DE left-upward. New equilibrium in C, with opposing changes in (p & D): p ↓ & D ↑ in IT; p ↑ D ↓ in DE (Fig. 2).

- **Result**: output (Y) and price (p) reduce in IT and increase in (DE) $(A \rightarrow B)$. **Problem**: adjustment mechanism to disequilibria.
- Automatic adjustment if: 1) prices (p) & wages (w) fully flexible; 2) labour (L) mobility high.
- If p & w flexible, output (Y) and unemployment (U) changes 2 countries ⇒ (p & w) ↓ IT and ↑ DE; supply (S) IT right-downward and DE left-upward. New equilibrium in C, with opposing changes in (p & D): p ↓ & D ↑ in IT; p ↑ D ↓ in DE (Fig. 2).
- If L mobility high, workers IT → DE, where D > S, removing pressures on (p & w) 2 countries.

- 4 週 ト - 4 三 ト - 4 三 ト

- **Result**: output (Y) and price (p) reduce in IT and increase in (DE) $(A \rightarrow B)$. **Problem**: adjustment mechanism to disequilibria.
- Automatic adjustment if: 1) prices (p) & wages (w) fully flexible; 2) labour (L) mobility high.
- If p & w flexible, output (Y) and unemployment (U) changes 2 countries ⇒ (p & w) ↓ IT and ↑ DE; supply (S) IT right-downward and DE left-upward. New equilibrium in C, with opposing changes in (p & D): p ↓ & D ↑ in IT; p ↑ D ↓ in DE (Fig. 2).
- ② If *L* mobility high, workers IT \longrightarrow DE, where *D* > *S*, removing pressures on (*p* & *w*) 2 countries.
 - \therefore , if p & w flexible or L mobility high, automatic adjustment process.

Costs

Figure 2. Automatic adjustment

• If 1 & 2 missing (*price stickiness; restricted labour mobility*), problem remains and IT & DE stuck in disequilibrium state (Fig.1).

- If 1 & 2 missing (*price stickiness; restricted labour mobility*), problem remains and IT & DE stuck in disequilibrium state (Fig.1).
- In such condition, adjustment process ⇒ inflation in DE and deflation in IT.

- If 1 & 2 missing (*price stickiness; restricted labour mobility*), problem remains and IT & DE stuck in disequilibrium state (Fig.1).
- In such condition, adjustment process ⇒ inflation in DE and deflation in IT.
- If countries ∉ MU, ∃ a number of solution ⇐ exchange rate regime:

- If 1 & 2 missing (*price stickiness; restricted labour mobility*), problem remains and IT & DE stuck in disequilibrium state (Fig.1).
- In such condition, adjustment process ⇒ inflation in DE and deflation in IT.
- If countries ∉ MU, ∃ a number of solution ⇐ exchange rate regime:

- If 1 & 2 missing (*price stickiness; restricted labour mobility*), problem remains and IT & DE stuck in disequilibrium state (Fig.1).
- In such condition, adjustment process ⇒ inflation in DE and deflation in IT.
- If countries ∉ MU, ∃ a number of solution ⇐ exchange rate regime:
- Flexible rate: currency price (rate) \Leftarrow Forex market (e.g., USA, UK, JP) and countries can use MP (changing *i* or *M*) to counter shocks.
- Fixed rate: currency price ← CB (fixed rate, or restricted currency bands, e.g., Denmark, Bosnia-Herzegovina, Kosovo with €; China, South-America, Micronesia States with \$) and counties can change *E* (devaluation/revaluation).

Costs

• In our

Example

: Italy and Germany

In our

Example

Costs

: Italy and Germany

Flexible rate: operate on i (∴ E) → D as follows. IT i ↓
 → E ↑→ D ↑; whereas DE i ↑ →→ E ↓ →→ D ↓;

3

(日) (同) (三) (三)

In our

Example

Costs

: Italy and Germany

- Flexible rate: operate on i (∴ E) → D as follows. IT i ↓
 → E ↑→ D ↑; whereas DE i ↑ → E ↓ → D ↓;
- Fixed rate: IT same effects on *D* devaluating its currency (£) as against Deutsche Mark (*DM*).

Costs

In our

Example

: Italy and Germany

- Flexible rate: operate on $i (:: \mathcal{E}) \to D$ as follows. IT $i \downarrow \longrightarrow \mathcal{E} \uparrow \longrightarrow D \uparrow$; whereas DE $i \uparrow \longrightarrow \mathcal{E} \downarrow \longrightarrow D \downarrow$;
- Fixed rate: IT same effects on *D* devaluating its currency (£) as against Deutsche Mark (*DM*).
- Effects in Fig. 3: expansionary MP in IT (or devaluation \mathcal{E}) shifts D_I right-upward; restrictive MP in DE (or revaluation \mathcal{E}) shifts D_G left-downward.

イロト イヨト イヨト イヨト

In our

Example

Costs

: Italy and Germany

- Flexible rate: operate on $i (:: \mathcal{E}) \to D$ as follows. IT $i \downarrow \longrightarrow \mathcal{E} \uparrow \longrightarrow D \uparrow$; whereas DE $i \uparrow \longrightarrow \mathcal{E} \downarrow \longrightarrow D \downarrow$;
- Fixed rate: IT same effects on *D* devaluating its currency (£) as against Deutsche Mark (*DM*).
- Effects in Fig. 3: expansionary MP in IT (or devaluation \mathcal{E}) shifts D_I right-upward; restrictive MP in DE (or revaluation \mathcal{E}) shifts D_G left-downward.
- **Result**: IT avoids recession (*Y* contraction & *U* increase) and DE inflation.

< ロト < 同ト < ヨト < ヨト

Costs

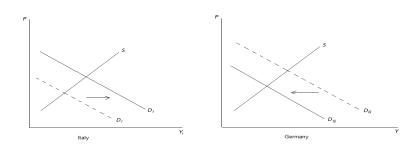


Figure 3. Effects of autonomous monetary policy

10 / 79

 Summary: ∈ MU, IT & DE give up autonomous monetary policy and hindered to demand *shock* management if flexibility conditions on (p & w) and L mobility hard to find. If so:

- Summary: ∈ MU, IT & DE give up autonomous monetary policy and hindered to demand *shock* management if flexibility conditions on (*p* & *w*) and *L* mobility hard to find. If so:
- a) IT, ← negative shock, can manage the problem through a very painful adjustment process → deflation (p ∧ w) ↓ and recession;

- Summary: ∈ MU, IT & DE give up autonomous monetary policy and hindered to demand *shock* management if flexibility conditions on (*p* & *w*) and *L* mobility hard to find. If so:
- a) IT, ← negative shock, can manage the problem through a very painful adjustment process → deflation (p ∧ w) ↓ and recession;
- b) DE, \leftarrow positive shock, would undergo more inflation $(p \land w) \uparrow$.

- Summary: ∈ MU, IT & DE give up autonomous monetary policy and hindered to demand *shock* management if flexibility conditions on (*p* & *w*) and *L* mobility hard to find. If so:
- a) IT, ← negative shock, can manage the problem through a very painful adjustment process → deflation (p ∧ w) ↓ and recession;
- b) DE, \leftarrow positive shock, would undergo more inflation $(p \land w) \uparrow$.
- Outcome reversed if *shock* D symmetric (Fig. 4).

- Summary: ∈ MU, IT & DE give up autonomous monetary policy and hindered to demand *shock* management if flexibility conditions on (*p* & *w*) and *L* mobility hard to find. If so:
- a) IT, ← negative shock, can manage the problem through a very painful adjustment process → deflation (p ∧ w) ↓ and recession;
- b) DE, \leftarrow positive shock, would undergo more inflation $(p \land w) \uparrow$.
- Outcome reversed if shock D symmetric (Fig. 4).
- If so, MUs more advantageous than autonomous State regimes.

Costs

Figure 4. Symmetric shock

Example

Negative symmetric shock on D

 Countries ∈ MU (IT & DE) can counteract negative shocks with expansionary MP from common CB (ECB).

Example

Negative symmetric shock on D

- Countries ∈ MU (IT & DE) can counteract negative shocks with expansionary MP from common CB (ECB).
- In MUs money market well integrated, *i* unique and ECB can lower *i* and stimulate *D* in both countries, banning the negative shock effects.

Example

Negative symmetric shock on D

- Countries ∈ MU (IT & DE) can counteract negative shocks with expansionary MP from common CB (ECB).
- In MUs money market well integrated, *i* unique and ECB can lower *i* and stimulate *D* in both countries, banning the negative shock effects.
- Unfeasible strategy under asymmetric *shocks*. In such a case, ECB
 —→ dilemma (∵ 1 instrument (*i*) and 2 problems, i.e., recession IT &
 expansion DE): if *i* ↓ to counteract IT recession, inflationary pressure
 DE raises; if *i* ↑ to prevent DE inflation, IT recession worsens.

• *i* changes also available to countries ∉ MUs. Open but less appealing is the devaluation.

- *i* changes also available to countries ∉ MUs. Open but less appealing is the devaluation.
- If IT devalues, D shifts right-upward against DE D (moving left-downward). If so, a devaluation feedback from DE very likely, setting up a devaluation spiral ('competitive devaluations') → inflationary surge and jeopardizing devaluation efficacy.

- *i* changes also available to countries ∉ MUs. Open but less appealing is the devaluation.
- If IT devalues, D shifts right-upward against DE D (moving left-downward). If so, a devaluation feedback from DE very likely, setting up a devaluation spiral ('competitive devaluations') → inflationary surge and jeopardizing devaluation efficacy.
- Devaluation-inflation spiral escaped only by a high-level of MPs coordination.

- *i* changes also available to countries ∉ MUs. Open but less appealing is the devaluation.
- If IT devalues, D shifts right-upward against DE D (moving left-downward). If so, a devaluation feedback from DE very likely, setting up a devaluation spiral ('competitive devaluations') → inflationary surge and jeopardizing devaluation efficacy.
- Devaluation-inflation spiral escaped only by a high-level of MPs coordination.
- By contrast, MPs coordination in MUs is formally established.

- *i* changes also available to countries ∉ MUs. Open but less appealing is the devaluation.
- If IT devalues, D shifts right-upward against DE D (moving left-downward). If so, a devaluation feedback from DE very likely, setting up a devaluation spiral ('competitive devaluations') → inflationary surge and jeopardizing devaluation efficacy.
- Devaluation-inflation spiral escaped only by a high-level of MPs coordination.
- By contrast, MPs coordination in MUs is formally established.
- Implication: under symmetric shocks, MUs emerge as more appealing than autonomous States regimes.

 Significant additional cost countries ∈ MU (not in OCA theory) involves budget deficit (d) financing.

- Significant additional cost countries ∈ MU (not in OCA theory) involves budget deficit (d) financing.
- Countries ∈ MU issue debt in a (common) currency over which they have no control.

- Significant additional cost countries ∈ MU (not in OCA theory) involves budget deficit (d) financing.
- Countries ∈ MU issue debt in a (common) currency over which they have no control.
- Italy, France, Spain, Holland, Germany etc. going into EMU stop issuing sovereign bonds in national currency to issue debt in a currency (€) they cannot manage (similar to issuing debt in a foreign currency, e.g., emerging countries).

- Significant additional cost countries ∈ MU (not in OCA theory) involves budget deficit (d) financing.
- Countries ∈ MU issue debt in a (common) currency over which they have no control.
- Italy, France, Spain, Holland, Germany etc. going into EMU stop issuing sovereign bonds in national currency to issue debt in a currency (€) they cannot manage (similar to issuing debt in a foreign currency, e.g., emerging countries).
- **Result**: countries ∈ MUs cannot guarantee the cash will always be available to pay out bondholders at maturity.

- Significant additional cost countries ∈ MU (not in OCA theory) involves budget deficit (d) financing.
- Countries ∈ MU issue debt in a (common) currency over which they have no control.
- Italy, France, Spain, Holland, Germany etc. going into EMU stop issuing sovereign bonds in national currency to issue debt in a currency (€) they cannot manage (similar to issuing debt in a foreign currency, e.g., emerging countries).
- Result: countries ∈ MUs cannot guarantee the cash will always be available to pay out bondholders at maturity.
- By contrast, countries ∉ MUs can always warrant debt repayment at maturity, calling upon the CB to act as a Lender of Last Resort (LLR) in sovereign bond markets and provide the required liquidity.

 Unwelcome effect: financial markets got the power → countries ∈ MU towards liquidity and solvency crises.

Example

Costs

liquidity and solvency crises

Giovanni Piersanti (Institute)

Costs

- Unwelcome effect: financial markets got the power → countries ∈ MU towards liquidity and solvency crises.
- To see take the following

Example

liquidity and solvency crises

Giovanni Piersanti (Institute)

Unwelcome effect: financial markets got the power → countries ∈ MU towards liquidity and solvency crises.

To see take the following

Example

Costs

liquidity and solvency crises

 Ountries ∈ MU: take a country ∈ MU (e.g., IT) and guess markets fear future payment difficulties on government debt (PD_I).

Costs

- Unwelcome effect: financial markets got the power → countries ∈ MU towards liquidity and solvency crises.
- To see take the following

Example

liquidity and solvency crises

- 1) Countries ∈ MU: take a country ∈ MU (e.g., IT) and guess markets fear future payment difficulties on government debt (PD_I).
- Investors sell Italian sovereign bonds → p ↓, i ↑. Next, they invest € cashed in other countries, e.g., Germany government bonds, with liquidity outflow (€) from IT banking market → DE market and M contraction in IT.

Costs

- Unwelcome effect: financial markets got the power → countries ∈ MU towards liquidity and solvency crises.
- To see take the following

Example

liquidity and solvency crises

- 1) Countries ∈ MU: take a country ∈ MU (e.g., IT) and guess markets fear future payment difficulties on government debt (PD_I).
- Investors sell Italian sovereign bonds → p ↓, i ↑. Next, they invest € cashed in other countries, e.g., Germany government bonds, with liquidity outflow (€) from IT banking market → DE market and M contraction in IT.
- Problems with debt rollover at reasonable rates → IT government to liquidity crisis Bank of Italy (Bol) cannot solve. ECB could, but Italy has no control on the ECB.

Giovanni Piersanti (Institute)

Costs

• If liquidity crisis carries on, $(i \wedge D_I) \uparrow\uparrow$, \longrightarrow IT into insolvency, validating default expectations on PD_I (self-fulfilling prophecies).

- If liquidity crisis carries on, (i ∧ D_I) ↑↑, → IT into insolvency, validating default expectations on PD_I (self-fulfilling prophecies).
- **Result**: In MU, markets got the power to bring any member country to its knees.

- If liquidity crisis carries on, (i ∧ D_I) ↑↑, → IT into insolvency, validating default expectations on PD_I (self-fulfilling prophecies).
- **Result**: In MU, markets got the power to bring any member country to its knees.
- 2) Countries ∉ MU: take an autonomous country (e.g., UK) and guess markets worry about possible (future) insolvency on *PD*_{UK}.

- If liquidity crisis carries on, (i ∧ D_I) ↑↑, → IT into insolvency, validating default expectations on PD_I (self-fulfilling prophecies).
- **Result**: In MU, markets got the power to bring any member country to its knees.
- 2) Countries ∉ MU: take an autonomous country (e.g., UK) and guess markets worry about possible (future) insolvency on PD_{UK}.
- Investors sell: a) UK sovereign bonds pushing p ↓ & i ↑; b) pounds
 (£) in Forex market (FX), causing £ to depreciate until investors start
 again buying these pounds.

- If liquidity crisis carries on, (i ∧ D_I) ↑↑, → IT into insolvency, validating default expectations on PD_I (self-fulfilling prophecies).
- **Result**: In MU, markets got the power to bring any member country to its knees.
- 2) Countries ∉ MU: take an autonomous country (e.g., UK) and guess markets worry about possible (future) insolvency on PD_{UK}.
- Investors sell: a) UK sovereign bonds pushing p ↓ & i ↑; b) pounds
 (£) in Forex market (FX), causing £ to depreciate until investors start again buying these pounds.
- **Result**: UK money stock (£) unchanged; part of £ stock reinvested in UK government securities.

- If liquidity crisis carries on, (i ∧ D_I) ↑↑, → IT into insolvency, validating default expectations on PD_I (self-fulfilling prophecies).
- **Result**: In MU, markets got the power to bring any member country to its knees.
- 2) Countries ∉ MU: take an autonomous country (e.g., UK) and guess markets worry about possible (future) insolvency on PD_{UK}.
- Investors sell: a) UK sovereign bonds pushing p ↓ & i ↑; b) pounds
 (£) in Forex market (FX), causing £ to depreciate until investors start again buying these pounds.
- **Result**: UK money stock (£) unchanged; part of £ stock reinvested in UK government securities.
- Nevertheless, UK government can always force the Bank of England (BoE) to buy up government securities and get the required liquidity to finance DP_{UK} .

Costs

• Implication: Markets cannot force stand-alone countries into default.

Example

asymmetric shocks and debt dynamics

Giovanni Piersanti (Institute)

- Implication: Markets cannot force stand-alone countries into default.
- Countries' vulnerability to shifting market sentiments ('animal spirits') downgrades countries ∈ MUs to the status of emerging economies, which issue debt in a foreign currency and are vulnerable to 'sudden stops' in capital inflows → recession, liquidity crisis, debt explosion and insolvency (Calvo, 1988; Eichengreen, Hausmann, Panizza, 2005; Piersanti, 2012, chap. 4).

Example

asymmetric shocks and debt dynamics

- Implication: Markets cannot force stand-alone countries into default.
- Countries' vulnerability to shifting market sentiments ('animal spirits') downgrades countries ∈ MUs to the status of emerging economies, which issue debt in a foreign currency and are vulnerable to 'sudden stops' in capital inflows → recession, liquidity crisis, debt explosion and insolvency (Calvo, 1988; Eichengreen, Hausmann, Panizza, 2005; Piersanti, 2012, chap. 4).
- Self-fulfilling debt crisis dynamics <= volatility market sentiments shown in the following

Example

asymmetric shocks and debt dynamics

- Implication: Markets cannot force stand-alone countries into default.
- Countries' vulnerability to shifting market sentiments ('animal spirits') downgrades countries ∈ MUs to the status of emerging economies, which issue debt in a foreign currency and are vulnerable to 'sudden stops' in capital inflows → recession, liquidity crisis, debt explosion and insolvency (Calvo, 1988; Eichengreen, Hausmann, Panizza, 2005; Piersanti, 2012, chap. 4).
- Self-fulfilling debt crisis dynamics volatility market sentiments shown in the following

Example

asymmetric shocks and debt dynamics

• Let asymmetric shock in Fig. 1 be temporary, \rightarrow recession IT & expansion DE.

Giovanni Piersanti (Institute)

• IT recession $\implies (Y \land T) \downarrow, (U \land d) \uparrow;$ expansion DE $\implies (Y \land T) \uparrow, (U \land d) \downarrow.$

э

< 4 ₽ × <

- IT recession \implies $(Y \land T) \downarrow$, $(U \land d) \uparrow$; expansion DE \implies $(Y \land T) \uparrow$, $(U \land d) \downarrow$.
- 2 possible scenarios: *a*) good; *b*) bad.

- IT recession \implies $(Y \land T) \downarrow$, $(U \land d) \uparrow$; expansion DE \implies $(Y \land T) \uparrow$, $(U \land d) \downarrow$.
- 2 possible scenarios: *a*) good; *b*) bad.
- If markets trust governments (IT & DE), automatic stabilizers government budget \rightarrow to equilibrium with no costly $(p \land w)$ adjustments or inter-State migration.

- IT recession \implies $(Y \land T) \downarrow$, $(U \land d) \uparrow$; expansion DE \implies $(Y \land T) \uparrow$, $(U \land d) \downarrow$.
- 2 possible scenarios: *a*) good; *b*) bad.
- If markets trust governments (IT & DE), automatic stabilizers government budget \rightarrow to equilibrium with no costly $(p \land w)$ adjustments or inter-State migration.
- Changes $d \iff$ cyclical displacement \rightarrow lessen recession intensity IT $(\gg d, \gg D, \therefore < Y \downarrow)$ and expansion DE $(\ll d, \ll D, < Y \uparrow)$.

- IT recession \implies $(Y \land T) \downarrow$, $(U \land d) \uparrow$; expansion DE \implies $(Y \land T) \uparrow$, $(U \land d) \downarrow$.
- 2 possible scenarios: *a*) good; *b*) bad.
- If markets trust governments (IT & DE), automatic stabilizers government budget → to equilibrium with no costly (p ∧ w) adjustments or inter-State migration.
- Changes $d \iff$ cyclical displacement \rightarrow lessen recession intensity IT $(\gg d, \gg D, \therefore < Y \downarrow)$ and expansion DE $(\ll d, \ll D, < Y \uparrow)$.
- Scenario (a) unchanged trust investors willing to hold IT government securities in portfolio, i.e., more IT bonds
 (⇐= ≫ d ∧ DP) with no ≫ i (unchanged debt riskiness) to offset
 ≪ DE bonds (⇐= ≪ d ∧ PD).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Scenario {(a) ∧ countries ∈ MU}, financial markets play a stabilization role: if countries in trouble, investors move funds from surplus countries (∵expansion) to deficit countries (∵ recession) lessening asymmetric shock effects (cyclical displacement).

- Scenario {(a) ∧ countries ∈ MU}, financial markets play a stabilization role: if countries in trouble, investors move funds from surplus countries (∵expansion) to deficit countries (∵ recession) lessening asymmetric shock effects (cyclical displacement).
- If shock deep & uncertain duration, trust sustainability (deficit ∧ public debt) recession country may drop → investors to start selling IT sovereign bonds and buy DE bonds.

- Scenario {(a) ∧ countries ∈ MU}, financial markets play a stabilization role: if countries in trouble, investors move funds from surplus countries (∵expansion) to deficit countries (∵ recession) lessening asymmetric shock effects (cyclical displacement).
- If shock deep & uncertain duration, trust sustainability (deficit ∧ public debt) recession country may drop → investors to start selling IT sovereign bonds and buy DE bonds.
- **Outcome**: liquidity outflows from IT \rightarrow DE; interest rate differential (spread) between IT and DE materializes; $(D\&Y)_{IT} \downarrow$, $(D\&Y)_{DE} \uparrow$; fiscal position & recession IT worsen; expected riskiness IT bonds \uparrow and debt rollover hard.

 If uncertainty and distrust keep going, country ←adverse shock forced to cut spending and/or raise taxes (austerity) to ↑ investors' trust. But austerity costly: worsens and extend recession phase and → government stopping service the debt & *default*, validating markets expectations sovereign debt unsustainability.

- If uncertainty and distrust keep going, country ←adverse shock forced to cut spending and/or raise taxes (austerity) to ↑ investors' trust. But austerity costly: worsens and extend recession phase and → government stopping service the debt & *default*, validating markets expectations sovereign debt unsustainability.
- In bad scenario, financial markets in MUs play no stabilization role; rather, they magnify cyclical fluctuation: ≫ recession IT and ≫ expansion DE.

- If uncertainty and distrust keep going, country ←adverse shock forced to cut spending and/or raise taxes (austerity) to ↑ investors' trust. But austerity costly: worsens and extend recession phase and → government stopping service the debt & *default*, validating markets expectations sovereign debt unsustainability.
- In bad scenario, financial markets in MUs play no stabilization role; rather, they magnify cyclical fluctuation: >>>> recession IT and >>>>> expansion DE.

- If uncertainty and distrust keep going, country ←adverse shock forced to cut spending and/or raise taxes (austerity) to ↑ investors' trust. But austerity costly: worsens and extend recession phase and → government stopping service the debt & *default*, validating markets expectations sovereign debt unsustainability.
- In bad scenario, financial markets in MUs play no stabilization role; rather, they magnify cyclical fluctuation: >>>> recession IT and >>>> expansion DE.
- IT bond selling \rightarrow currency (\pm) depreciation and DM appreciation (bond selling for \pm and DM buying on FX) $\rightarrow D_{IT} \uparrow \& D_{DE} \downarrow$, lessening effects of cyclical displacement.

< 口 > < 同 > < 三 > < 三

Monetary unions & fiscal union

OCA theory → 2 solutions for lowering costs ∈ MU: 1) CB role (EU: ECB); 2) Fiscal Union (FU).

Example

Monetary unions & fiscal union

- OCA theory → 2 solutions for lowering costs ∈ MU: 1) CB role (EU: ECB); 2) Fiscal Union (FU).
- Take option 2) \implies MU \land FU.

Example

Monetary unions & fiscal union

- OCA theory \rightarrow 2 solutions for lowering costs \in MU: 1) CB role (EU: ECB); 2) Fiscal Union (FU).
- Take option 2) \implies MU \land FU.
- FU (or budgetary union) ⊂ 2 functions: i) have an insurance mechanism allowing Y transfers to the country under adverse shock;
 ii) have a centralized union budget to shield member countries from liquidity crisis & insolvency.

Example

Monetary unions & fiscal union

- OCA theory \rightarrow 2 solutions for lowering costs \in MU: 1) CB role (EU: ECB); 2) Fiscal Union (FU).
- Take option 2) \implies MU \land FU.
- FU (or budgetary union) ⊂ 2 functions: i) have an insurance mechanism allowing Y transfers to the country under adverse shock;
 ii) have a centralized union budget to shield member countries from liquidity crisis & insolvency.
- Function *i*) is shown in the following

Example

Monetary unions & fiscal union

- OCA theory \rightarrow 2 solutions for lowering costs \in MU: 1) CB role (EU: ECB); 2) Fiscal Union (FU).
- Take option 2) \implies MU \land FU.
- FU (or budgetary union) ⊂ 2 functions: i) have an insurance mechanism allowing Y transfers to the country under adverse shock;
 ii) have a centralized union budget to shield member countries from liquidity crisis & insolvency.
- Function *i*) is shown in the following

Example FU insurance mechanism

Let national budgets countries ∈ MU (e.g., IT & DE) be (fully/partly) centralized at EU level (i.e., ∃ EU government: T, G, TR fixed ∀ EZ).

Giovanni Piersanti (Institute)

22 / 79

Monetary unions & fiscal union

In budgetary union systems {MU ∧ FU}: a) EU fiscal revenues fall in IT (∵ recession) & raise in DE (∵ expansion); b) EU expenditure increases in IT (∵ ≫ U) and reduces in DE (∵ ≪ U).

- In budgetary union systems {MU ∧ FU}: a) EU fiscal revenues fall in IT (∵ recession) & raise in DE (∵ expansion); b) EU expenditure increases in IT (∵ ≫ U) and reduces in DE (∵ ≪ U).
- Outcome: FU automatically transfers Y from countries under good economic conditions to countries under bad condition, tempering cyclical displacement effects & stabilizing C ∧ Y over time.

- In budgetary union systems {MU ∧ FU}: a) EU fiscal revenues fall in IT (∵ recession) & raise in DE (∵ expansion); b) EU expenditure increases in IT (∵ ≫ U) and reduces in DE (∵ ≪ U).
- Outcome: FU automatically transfers Y from countries under good economic conditions to countries under bad condition, tempering cyclical displacement effects & stabilizing C ∧ Y over time.
- Critical issue: Moral Hazard (MH), → countries issuing too much debt & ≪ pressure to structural adjustment (structural reforms), so making transfers permanent (← aversion 'virtuous' countries).

- In budgetary union systems {MU ∧ FU}: a) EU fiscal revenues fall in IT (∵ recession) & raise in DE (∵ expansion); b) EU expenditure increases in IT (∵ ≫ U) and reduces in DE (∵ ≪ U).
- Outcome: FU automatically transfers Y from countries under good economic conditions to countries under bad condition, tempering cyclical displacement effects & stabilizing C ∧ Y over time.
- Critical issue: Moral Hazard (MH), → countries issuing too much debt & ≪ pressure to structural adjustment (structural reforms), so making transfers permanent (← aversion 'virtuous' countries).
- Function *ii*) ⇒ ∃ EZ government that *a*) can issue debt in its own currency (€); *b*) can counteract speculative attacks & liquidity crises by exchange rate changes and/or CB (ECB) actions to provide needed liquidity.

- In budgetary union systems {MU ∧ FU}: a) EU fiscal revenues fall in IT (∵ recession) & raise in DE (∵ expansion); b) EU expenditure increases in IT (∵ ≫ U) and reduces in DE (∵ ≪ U).
- Outcome: FU automatically transfers Y from countries under good economic conditions to countries under bad condition, tempering cyclical displacement effects & stabilizing C ∧ Y over time.
- Critical issue: Moral Hazard (MH), → countries issuing too much debt & ≪ pressure to structural adjustment (structural reforms), so making transfers permanent (← aversion 'virtuous' countries).
- Function *ii*) ⇒ ∃ EZ government that *a*) can issue debt in its own currency (€); *b*) can counteract speculative attacks & liquidity crises by exchange rate changes and/or CB (ECB) actions to provide needed liquidity.
- Implication: in (MU+FU), countries give up sovereignty, but get back protection against markets inherent volatility. These can no more → countries ∈ MU to liquidity crisis & insolvency.
 Giovanni Piersanti (Institute)

Financial markets' role

 To day, probability to fulfil EMU with FU minimal: EU budget only 1% of its GDP, whereas national budgets take up 40 - 50% of respective GDP. Unwillingness to go → FU means EMU to be an imperfect (fragile) construction with no insurance mechanism against adverse shock.

Financial markets' role

- To day, probability to fulfil EMU with FU minimal: EU budget only 1% of its GDP, whereas national budgets take up 40 - 50% of respective GDP. Unwillingness to go → FU means EMU to be an imperfect (fragile) construction with no insurance mechanism against adverse shock.
- Alternative mechanism ← financial markets. On financial markets, asymmetric shocks ⇒ : stocks & bonds price ↓ in countries under recession (IT), and ↑ in those under growth (DE).

Financial markets' role

- To day, probability to fulfil EMU with FU minimal: EU budget only 1% of its GDP, whereas national budgets take up 40 - 50% of respective GDP. Unwillingness to go → FU means EMU to be an imperfect (fragile) construction with no insurance mechanism against adverse shock.
- Alternative mechanism ← financial markets. On financial markets, asymmetric shocks ⇒ : stocks & bonds price ↓ in countries under recession (IT), and ↑ in those under growth (DE).
- If capital markets fully integrated, financial assets ∈ portfolios Italian and Germany citizens. ∴ losses and gains would flow out across all portfolios, lessening shock effects.

Financial markets' role

- To day, probability to fulfil EMU with FU minimal: EU budget only 1% of its GDP, whereas national budgets take up 40 - 50% of respective GDP. Unwillingness to go → FU means EMU to be an imperfect (fragile) construction with no insurance mechanism against adverse shock.
- Alternative mechanism ← financial markets. On financial markets, asymmetric shocks ⇒ : stocks & bonds price ↓ in countries under recession (IT), and ↑ in those under growth (DE).
- If capital markets fully integrated, financial assets ∈ portfolios Italian and Germany citizens. ∴ losses and gains would flow out across all portfolios, lessening shock effects.
- **Result:** fully integrated financial markets works as an insurance mechanism, transmitting asymmetric shock effects across all countries.

Financial markets' role

- To day, probability to fulfil EMU with FU minimal: EU budget only 1% of its GDP, whereas national budgets take up 40 - 50% of respective GDP. Unwillingness to go → FU means EMU to be an imperfect (fragile) construction with no insurance mechanism against adverse shock.
- Alternative mechanism ← financial markets. On financial markets, asymmetric shocks ⇒ : stocks & bonds price ↓ in countries under recession (IT), and ↑ in those under growth (DE).
- If capital markets fully integrated, financial assets ∈ portfolios Italian and Germany citizens. ∴ losses and gains would flow out across all portfolios, lessening shock effects.
- **Result:** fully integrated financial markets works as an insurance mechanism, transmitting asymmetric shock effects across all countries.

• Vantages: cutting MH risk; disadvantages: benefits only financial assets holders.

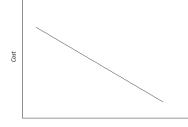
Giovanni Piersanti (Institute)

December 2020 24 / 79

Trade integration & costs

• FU lacking \implies additional cost: \gg cyclical asynchrony.

- FU lacking \implies additional cost: \gg cyclical asynchrony.
- In incomplete MUs, member countries retain considerable sovereignty in several areas, firstly fiscal policy. Changing *T* & *G*, national governments can occasion asymmetric shocks→ costly adjustments and periodic liquidity & debt crises.


- FU lacking \implies additional cost: \gg cyclical asynchrony.
- In incomplete MUs, member countries retain considerable sovereignty in several areas, firstly fiscal policy. Changing *T* & *G*, national governments can occasion asymmetric shocks→ costly adjustments and periodic liquidity & debt crises.
- Similar effects \Leftarrow different legal, banking, wage bargaining, taxation systems, etc..

- FU lacking \implies additional cost: \gg cyclical asynchrony.
- In incomplete MUs, member countries retain considerable sovereignty in several areas, firstly fiscal policy. Changing *T* & *G*, national governments can occasion asymmetric shocks→ costly adjustments and periodic liquidity & debt crises.
- Outcome: Nation-States persistency in MUs → ≫ asynchrony and macro divergence among member countries.

- FU lacking \implies additional cost: \gg cyclical asynchrony.
- In incomplete MUs, member countries retain considerable sovereignty in several areas, firstly fiscal policy. Changing *T* & *G*, national governments can occasion asymmetric shocks→ costly adjustments and periodic liquidity & debt crises.
- Outcome: Nation-States persistency in MUs → ≫ asynchrony and macro divergence among member countries.
- If countries ∈ MUs well-integrated (goods & capital markets), asynchrony get shrinking, → negative relationship between costs ∈ MU and openness degree-to-GDP (Fig. 5).

- FU lacking \implies additional cost: \gg cyclical asynchrony.
- In incomplete MUs, member countries retain considerable sovereignty in several areas, firstly fiscal policy. Changing *T* & *G*, national governments can occasion asymmetric shocks→ costly adjustments and periodic liquidity & debt crises.
- Similar effects \Leftarrow different legal, banking, wage bargaining, taxation systems, etc..
- Outcome: Nation-States persistency in MUs → ≫ asynchrony and macro divergence among member countries.
- If countries ∈ MUs well-integrated (goods & capital markets), asynchrony get shrinking, → negative relationship between costs ∈ MU and openness degree-to-GDP (Fig. 5).

Trade integration & costs

Trade openness

Figure 5. Cost \in MU & trade-openness/GDP

Giovanni Piersanti (Institute)

The Economics of Monetary Unions

December 2020

26 / 79

Costs-Benefits Monetary Unions Benefits

 While costs ∈ MU tangible at macro level, benefits are mostly at micro level ⇐ ≫ economic efficiency (EF).

Costs-Benefits Monetary Unions Benefits

- While costs ∈ MU tangible at macro level, benefits are mostly at micro level ⇐ ≫ economic efficiency (EF).
- EF may arise from suppression of: *a*) transactions costs and exchange rate risks; *b*) exchange rate volatility.

- While costs ∈ MU tangible at macro level, benefits are mostly at micro level ⇐ ≫ economic efficiency (EF).
- EF may arise from suppression of: *a*) transactions costs and exchange rate risks; *b*) exchange rate volatility.
- Benefits under a) are direct and indirect.

- While costs ∈ MU tangible at macro level, benefits are mostly at micro level ⇐ ≫ economic efficiency (EF).
- EF may arise from suppression of: *a*) transactions costs and exchange rate risks; *b*) exchange rate volatility.
- Benefits under a) are direct and indirect.
- Direct benefits obvious, ⇐ elimination of exchange margin and commission fees paid to banks for converting one currency into another. European Commission (EC, 1990) estimated gains at 13 20 bln € ~ 0.25 0.5 of 1.0% p. GDP.

Costs-Benefits Monetary Unions Benefits

- While costs ∈ MU tangible at macro level, benefits are mostly at micro level ⇐ ≫ economic efficiency (EF).
- EF may arise from suppression of: *a*) transactions costs and exchange rate risks; *b*) exchange rate volatility.
- Benefits under a) are direct and indirect.
- Direct benefits obvious, ⇐ elimination of exchange margin and commission fees paid to banks for converting one currency into another. European Commission (EC, 1990) estimated gains at 13 20 bln € ~ 0.25 0.5 of 1.0% p. GDP.

Costs-Benefits Monetary Unions Benefits

- Ratio: i) ≪costs (fixed & variable) exporting firms; ii) ≪real interest rate (r) ⇐ < systemic risk from exchange rate variability (in less risky environment, agents ask a lower return (risk premium) for their investments, → r ↓ & growth↑.

- Ratio: i) ≪costs (fixed & variable) exporting firms; ii) ≪real interest rate (r) ⇐ < systemic risk from exchange rate variability (in less risky environment, agents ask a lower return (risk premium) for their investments, → r ↓ & growth↑.
- Empirical evidence (EMU) limited. Trade effects ← € poor (5% - 20%, Flam-Nordström, 2006; Baldwin et al., 2008; Berger-Nitsch, 2008); growth effects even lower: growth countries ∈ EZ < growth non-euro countries, e.g., USA, UK (De Grauwe, 2015; Summers, 2014).

- Ratio: i) ≪costs (fixed & variable) exporting firms; ii) ≪real interest rate (r) ⇐ < systemic risk from exchange rate variability (in less risky environment, agents ask a lower return (risk premium) for their investments, → r ↓ & growth↑.
- Empirical evidence (EMU) limited. Trade effects ← € poor (5% - 20%, Flam-Nordström, 2006; Baldwin et al., 2008; Berger-Nitsch, 2008); growth effects even lower: growth countries ∈ EZ < growth non-euro countries, e.g., USA, UK (De Grauwe, 2015; Summers, 2014).
- Benefits higher if the common currency take on the global reserve currency status: 3 possible benefits

Higher fiscal revenues: if € used in international transactions, profits ECB↑, distributed (pro rata) EZ governments → ≪ T ∀ G to the benefits of people in EZ. The overall estimated effect, however, small: ~ 0.5% GDP.

- Higher fiscal revenues: if € used in international transactions, profits ECB↑, distributed (pro rata) EZ governments → ≪ T ∀ G to the benefits of people in EZ. The overall estimated effect, however, small: ~ 0.5% GDP.
- Provide the serve currency: → ≫ sovereign bond purchases of EZ countries→ easier budget deficit financing (2016: € was ~ 25% total reserve currency; \$ ~ 63%)

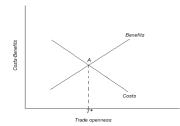
- Higher fiscal revenues: if € used in international transactions, profits ECB↑, distributed (pro rata) EZ governments → ≪ T ∀ G to the benefits of people in EZ. The overall estimated effect, however, small: ~ 0.5% GDP.
- Q Reserve currency: → ≫ sovereign bond purchases of EZ countries→ easier budget deficit financing (2016: € was ~ 25% total reserve currency; \$ ~ 63%)
- Greater financial markets activity: higher investment in euro-denominated financial assets → ≫ transactions in EZ banking sector→ ≫ Y and employment.

- Higher fiscal revenues: if € used in international transactions, profits ECB↑, distributed (pro rata) EZ governments → ≪ T ∀ G to the benefits of people in EZ. The overall estimated effect, however, small: ~ 0.5% GDP.
- Q Reserve currency: → ≫ sovereign bond purchases of EZ countries→ easier budget deficit financing (2016: € was ~ 25% total reserve currency; \$ ~ 63%)
- Greater financial markets activity: higher investment in euro-denominated financial assets → ≫ transactions in EZ banking sector→ ≫ Y and employment.
 - Implication: positive relationship between benefits & openness degree countries ∈ MUs (Fig. 6).

Trade integration & benefits

Figure 6. Benefits \in MU & trade-openness/GDP

Giovanni Piersanti (Institute)


The Economics of Monetary Unions

December 2020

30 / 79

Evaluation

Comparison costs-benefits ∈ MU in Fig. 7, useful to assess EMU as OCA.

Figure 7. Costs-Benefits \in MU (% GDP)

Giovanni Piersanti (Institute)

The Economics of Monetary Unions

December 2020 31 / 79

Evaluation

Intersection (A) 2 curves determines critical openness level (T*) → country ∈ MU: to the left of A, C > B, ∉ MU dominant; to the right of A, B > C ∈ MU dominant.

- Intersection (A) 2 curves determines critical openness level (T*) → country ∈ MU: to the left of A, C > B, ∉ MU dominant; to the right of A, B > C ∈ MU dominant.

- Intersection (A) 2 curves determines critical openness level (T*) → country ∈ MU: to the left of A, C > B, ∉ MU dominant; to the right of A, B > C ∈ MU dominant.
- If national MPs (e.g., exchange rate) ineffective (*Monetarist view*), cost curve → South-West, T* → towards origin and ≫ advantageous ∈ MU (i.e., give up national currency); if national MPs effective (*Keynesian view*), cost curve → North-East, T* → rightward and ≫ costly ∈ MU.

- Intersection (A) 2 curves determines critical openness level (T*) → country ∈ MU: to the left of A, C > B, ∉ MU dominant; to the right of A, B > C ∈ MU dominant.
- If national MPs (e.g., exchange rate) ineffective (*Monetarist view*), cost curve → South-West, T* → towards origin and ≫ advantageous ∈ MU (i.e., give up national currency); if national MPs effective (*Keynesian view*), cost curve → North-East, T* → rightward and ≫ costly ∈ MU.
- EMU construction in 90s ← Monetarist view dominance in 80s. Crisis EZ 2010 revitalized Keynesian view and → rethinking convenience ∈ MU.

- Intersection (A) 2 curves determines critical openness level (T*) → country ∈ MU: to the left of A, C > B, ∉ MU dominant; to the right of A, B > C ∈ MU dominant.
- If national MPs (e.g., exchange rate) ineffective (*Monetarist view*), cost curve → South-West, T* → towards origin and ≫ advantageous ∈ MU (i.e., give up national currency); if national MPs effective (*Keynesian view*), cost curve → North-East, T* → rightward and ≫ costly ∈ MU.
- EMU construction in 90s ← Monetarist view dominance in 80s. Crisis EZ 2010 revitalized Keynesian view and → rethinking convenience ∈ MU.
- To go deeper into EMU-OCA issue, consider first the trade size within EU (Tab.1)

Evaluation

Country	Ratio	Country	Ratio	Country	Ratio	Country	Ratio
SK	71.7	EE	49.5	DE	24.9	IT	13.7
HU	67.2	LT	42.6	DK	22.0	ES	13.5
CZ	65.8	IR	34.0	PT	19.5	FR	12.4
BE	62.5	LV	31.8	SE	19.1	UK	10.8
NL	61.4	AT	30.4	MT	17.3	EL	6.0
SI	52.7	PL	28.5	FI	16.0	CY	5.1

Tab. 1 Exports intra-EU, 2012 (% GDP). Source: European Commission SK=Slovakia; HU=Hungary; CZ=Czechia; BE=Belgium; NL=Netherlands; SI=Slovenia; EE=Estonia; LT=Lithuania; IR=Ireland; LV=Latvia; AT= Austria; PL=Poland; DE=Germany; DK=Denmark; PT=Portugal; SE= Sweden; MT=Malta; FI=Finland; IT=Italy; ES=Spain; FR=France; UK= United Kingdom; EL=Greece; CY=Cyprus.

Evaluation

 Data show huge differences in openness degree: Slovakia, Hungary, Netherlands, Czech, Belgium, Slovenia, Estonia, Austria, Ireland and Poland with high ratios & positive net benefits; United Kingdom, Greece, Cyprus (including Italy, Spain, and France) with low ratios & net benefits less obvious.

- Data show huge differences in openness degree: Slovakia, Hungary, Netherlands, Czech, Belgium, Slovenia, Estonia, Austria, Ireland and Poland with high ratios & positive net benefits; United Kingdom, Greece, Cyprus (including Italy, Spain, and France) with low ratios & net benefits less obvious.
- Hard mark a clear-cut line.

- Data show huge differences in openness degree: Slovakia, Hungary, Netherlands, Czech, Belgium, Slovenia, Estonia, Austria, Ireland and Poland with high ratios & positive net benefits; United Kingdom, Greece, Cyprus (including Italy, Spain, and France) with low ratios & net benefits less obvious.
- Hard mark a clear-cut line.
- Reasons:

- Data show huge differences in openness degree: Slovakia, Hungary, Netherlands, Czech, Belgium, Slovenia, Estonia, Austria, Ireland and Poland with high ratios & positive net benefits; United Kingdom, Greece, Cyprus (including Italy, Spain, and France) with low ratios & net benefits less obvious.
- Hard mark a clear-cut line.
- Reasons:

Evaluation

There are other parameters driving the MU choice, e.g., degree of flexibility, shock asymmetry.

• Data show huge differences in openness degree: Slovakia, Hungary, Netherlands, Czech, Belgium, Slovenia, Estonia, Austria, Ireland and Poland with high ratios & positive net benefits; United Kingdom, Greece, Cyprus (including Italy, Spain, and France) with low ratios & net benefits less obvious.

- Hard mark a clear-cut line.
- Reasons:

- There are other parameters driving the MU choice, e.g., degree of flexibility, shock asymmetry.
- ② Countries with low openness degree could choose MUs to raise international reputation. If monetarist minded, costs ⇐= loss monetary autonomy < benefits, → MU choice despite low intra-trade: main reason MU or pegged-rate-regime choice for many countries with high & persistent inflation.

• If 2 main motivation (i.e., \gg international credibility & \ll inflation), criterion 1. more complex.

- If 2 main motivation (i.e., ≫ international credibility & ≪ inflation), criterion 1. more complex.
- Take the costs-benefits relationship between being in MU and flexibility labour & goods markets (*p*, *w*, *L*).

- If 2 main motivation (i.e., \gg international credibility & \ll inflation), criterion 1. more complex.
- Take the costs-benefits relationship between being in MU and flexibility labour & goods markets (*p*, *w*, *L*).
- If (p, w) flexible and labour mobility high, MU support is high ∵ adjustment process asymmetric shocks fast & less costly: cost curve shifts South-West, critical intersection point intra-MU trade reduces (T* → T**) and countries ≫ willing ∈ MU (A → A' in Fig. 8).

- If 2 main motivation (i.e., \gg international credibility & \ll inflation), criterion 1. more complex.
- Take the costs-benefits relationship between being in MU and flexibility labour & goods markets (*p*, *w*, *L*).
- If (p, w) flexible and labour mobility high, MU support is high ∴ adjustment process asymmetric shocks fast & less costly: cost curve shifts South-West, critical intersection point intra-MU trade reduces (T* → T**) and countries ≫ willing ∈ MU (A → A' in Fig. 8).
- If (p, w) rigid & L less mobile, costs MU high and less advantageous \in MU $(A' \rightarrow A)$.

Evaluation

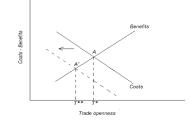


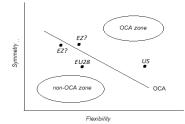
Figure 8. Costs-Benefits and rigidities

Giovanni Piersanti (Institute)

The Economics of Monetary Unions

December 2020 36 / 79

 In addition to flexibility (p, w, L), choice ∈ MU rests on size and frequency asymmetric shocks. If shock (D & S) dissimilar, MU choice costly (cost curve → North-East, Fig. 8).


- In addition to flexibility (p, w, L), choice ∈ MU rests on size and frequency asymmetric shocks. If shock (D & S) dissimilar, MU choice costly (cost curve → North-East, Fig. 8).
- Implication: negative relationship between flexibility & symmetry countries ∈ MU (Fig. 9: y-axis, degree of symmetry, i.e., outputemployment correlation; x-axis, degree of flexibility goods & labour markets).

Costs-Benefits Monetary Unions Evaluation

- In addition to flexibility (p, w, L), choice ∈ MU rests on size and frequency asymmetric shocks. If shock (D & S) dissimilar, MU choice costly (cost curve → North-East, Fig. 8).
- Implication: negative relationship between flexibility & symmetry countries ∈ MU (Fig. 9: y-axis, degree of symmetry, i.e., outputemployment correlation; x-axis, degree of flexibility goods & labour markets).
- Inference ⇐ OCA theory: under strong asymmetry, countries ∈
 MUs need high flexibility (p, w & L): ≫ flexibility, ≪ costs ∈ MU.

- In addition to flexibility (p, w, L), choice ∈ MU rests on size and frequency asymmetric shocks. If shock (D & S) dissimilar, MU choice costly (cost curve → North-East, Fig. 8).
- Implication: negative relationship between flexibility & symmetry countries ∈ MU (Fig. 9: y-axis, degree of symmetry, i.e., outputemployment correlation; x-axis, degree of flexibility goods & labour markets).
- Inference ⇐ OCA theory: under strong asymmetry, countries ∈
 MUs need high flexibility (p, w & L): ≫ flexibility, ≪ costs ∈ MU.
- Downward OCA-line denotes the minimum mix symmetry-flexibility for MUs running as OCA (i.e., $B \ge C$). To the left, flexibility not enough given symmetry (non-OCA zone: C > B); to the right, flexibility suited given symmetry (OCA zone: C < B).

Evaluation

Figure 9. Relationship flexibility-symmetry in MUs

Giovanni Piersanti (Institute)

The Economics of Monetary Unions

December 2020 38 / 79

Evaluation

Fig. 9 shows (guessed) position countries ∈ MU, e.g., EU28 ⊂ {DE, FR, IT, BE, LU, NL, IR, EL, PT, ES, AT, FI, SK, CY, MT, SI, EE, LV, LT, UK, DK, SE, PL, CZ, HU, BG, RO, HR} trusted non-OCA zone (Eichengreen, 1990; De Grauwe-Heens, 1993; Korhonen-Fidrmuc, 2001; Beine et al., 2003); minimum subset given by {DE, BE, LU, NL, AT, FR} trusted OCA zone; US guessed OCA zone; EZ position uncertain.

- Fig. 9 shows (guessed) position countries ∈ MU, e.g., EU28 ⊂ {DE, FR, IT, BE, LU, NL, IR, EL, PT, ES, AT, FI, SK, CY, MT, SI, EE, LV, LT, UK, DK, SE, PL, CZ, HU, BG, RO, HR} trusted non-OCA zone (Eichengreen, 1990; De Grauwe-Heens, 1993; Korhonen-Fidrmuc, 2001; Beine et al., 2003); minimum subset given by {DE, BE, LU, NL, AT, FR} trusted OCA zone; US guessed OCA zone; EZ position uncertain.
- Remark: EU28 and US (same symmetry but different flexibility) → US (≫ flexibility) above OCA-line, EU28 (≪ flexibility) below OCA-line. Uncertainty EZ position ← divergent analysts' opinions and EZ crisis → view EZ non-OCA zone.

- Fig. 9 shows (guessed) position countries ∈ MU, e.g., EU28 ⊂ {DE, FR, IT, BE, LU, NL, IR, EL, PT, ES, AT, FI, SK, CY, MT, SI, EE, LV, LT, UK, DK, SE, PL, CZ, HU, BG, RO, HR} trusted non-OCA zone (Eichengreen, 1990; De Grauwe-Heens, 1993; Korhonen-Fidrmuc, 2001; Beine et al., 2003); minimum subset given by {DE, BE, LU, NL, AT, FR} trusted OCA zone; US guessed OCA zone; EZ position uncertain.
- Remark: EU28 and US (same symmetry but different flexibility) → US (≫ flexibility) above OCA-line, EU28 (≪ flexibility) below OCA-line. Uncertainty EZ position ← divergent analysts' opinions and EZ crisis → view EZ non-OCA zone.
- Key issue: how move UE28 into OCA zone. Two possible strategies: 1) reduce shock asymmetry; 2) increase flexibility.

Evaluation

Troubles with 1) <= a) factors not quite under policymakers' control (e.g., industrial & regional specialization, resource endowment, etc.); and b) political union powerful tool-shrinkage asymmetric shocks.

- Troubles with 1) <= a) factors not quite under policymakers' control (e.g., industrial & regional specialization, resource endowment, etc.); and b) political union powerful tool-shrinkage asymmetric shocks.

- Troubles with 1) <= a) factors not quite under policymakers' control (e.g., industrial & regional specialization, resource endowment, etc.); and b) political union powerful tool-shrinkage asymmetric shocks.
- Fig. 10 shows adjustment costs asymmetric shock incomplete MU (IMU) ≫ full (complete) MU (FMU) and figures out FMU dominance. Empirical observation supports this hypothesis: e.g., EZ ∈ IMU vs. US ∈ FUM.

Evaluation

- Troubles with 1) <= a) factors not quite under policymakers' control (e.g., industrial & regional specialization, resource endowment, etc.); and b) political union powerful tool-shrinkage asymmetric shocks.
- Fig. 10 shows adjustment costs asymmetric shock incomplete MU (IMU) ≫ full (complete) MU (FMU) and figures out FMU dominance. Empirical observation supports this hypothesis: e.g., EZ ∈ IMU vs. US ∈ FUM.
- Strategy 2) → structural reforms goods & labour markets, i.e., policies → ≫ flexibility p, w, L.

< 口 > < 同 > < 三 > < 三

Evaluation

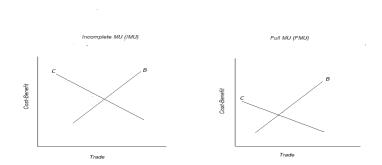
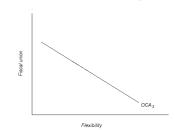


Figure 10. Costs-Benefits complete and incomplete MUs

Evaluation

 Investigation C & B envisages ∃ trade-off flexibility-fiscal union in MUs → new OCA line.

- Investigation C & B envisages ∃ trade-off flexibility-fiscal union in MUs → new OCA line.
- Idea in Sapir (2015) and shown as OCA₅ in Fig. 11 (FU on y-axis; flexibility on x-axis).


- Investigation C & B envisages ∃ trade-off flexibility-fiscal union in MUs → new OCA line.
- Idea in Sapir (2015) and shown as OCA_S in Fig. 11 (FU on y-axis; flexibility on x-axis).
- OCA_S line shows minimum mix FU-flexibility needed to \in MU (C < B).

- Investigation C & B envisages ∃ trade-off flexibility-fiscal union in MUs → new OCA line.
- Idea in Sapir (2015) and shown as OCA_S in Fig. 11 (FU on y-axis; flexibility on x-axis).
- OCA_S line shows minimum mix FU-flexibility needed to \in MU (C < B).
- OCA_S line negatively sloped as the higher FU, the higher the insurance cover to asymmetric shocks and the lesser the cost ∈ MU.

- Investigation C & B envisages ∃ trade-off flexibility-fiscal union in MUs → new OCA line.
- Idea in Sapir (2015) and shown as OCA_S in Fig. 11 (FU on y-axis; flexibility on x-axis).
- OCA_S line shows minimum mix FU-flexibility needed to \in MU (C < B).
- OCA_S line negatively sloped as the higher FU, the higher the insurance cover to asymmetric shocks and the lesser the cost ∈ MU.
- Implication: > FU \implies < needed flexibility \in MU; conversely, < FU \implies > flexibility.

- Investigation C & B envisages ∃ trade-off flexibility-fiscal union in MUs → new OCA line.
- Idea in Sapir (2015) and shown as OCA_S in Fig. 11 (FU on y-axis; flexibility on x-axis).
- OCA_S line shows minimum mix FU-flexibility needed to \in MU (C < B).
- OCA_S line negatively sloped as the higher FU, the higher the insurance cover to asymmetric shocks and the lesser the cost ∈ MU.
- Implication: > FU \implies < needed flexibility \in MU; conversely, < FU \implies > flexibility.
- Critical point: flexibility appealing to many economists, CB governors, and firms, but costly for those suffering ≪ w and/or ≫ mobility. Result: > FU can make it less costly ∈ MU for large sections of people.

Evaluation

Figure 11. Trade-off FU-Flexibility

Giovanni Piersanti (Institute)

The Economics of Monetary Unions

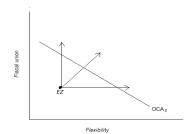
December 2020 43 / 79

• OCA_S curve allows to study the relationship between (asymmetric) shocks & policy strategies in MUs (e.g., EZ).

- OCA_S curve allows to study the relationship between (asymmetric) shocks & policy strategies in MUs (e.g., EZ).
- Partition shocks in: *i*) exogenous & permanent (e.g., changes in preferences, oil prices, technology, etc.); *ii*) endogenous & temporary (e.g., cyclical fluctuations).

- OCA_S curve allows to study the relationship between (asymmetric) shocks & policy strategies in MUs (e.g., EZ).
- Partition shocks in: *i*) exogenous & permanent (e.g., changes in preferences, oil prices, technology, etc.); *ii*) endogenous & temporary (e.g., cyclical fluctuations).
- Set EZ below OCA_S line, assuming EZ non OCA (Fig. 12).

- OCA_S curve allows to study the relationship between (asymmetric) shocks & policy strategies in MUs (e.g., EZ).
- Partition shocks in: *i*) exogenous & permanent (e.g., changes in preferences, oil prices, technology, etc.); *ii*) endogenous & temporary (e.g., cyclical fluctuations).
- Set EZ below OCA_S line, assuming EZ non OCA (Fig. 12).
- Optimal reaction to exogenous shock points to ≫ flexibility (Figs. 1 & 9); optimal reaction to endogenous shock points to ≫ budgetary union (Fig. 10), such as:


- OCA_S curve allows to study the relationship between (asymmetric) shocks & policy strategies in MUs (e.g., EZ).
- Partition shocks in: *i*) exogenous & permanent (e.g., changes in preferences, oil prices, technology, etc.); *ii*) endogenous & temporary (e.g., cyclical fluctuations).
- Set EZ below OCA_S line, assuming EZ non OCA (Fig. 12).
- Optimal reaction to exogenous shock points to >> flexibility (Figs. 1 & 9); optimal reaction to endogenous shock points to >> budgetary union (Fig. 10), such as:
- if shock exogenous, optimal reaction EZ → OCA zone is on horizontal arrow, i.e., ≫ flexibility (structural reforms goods & labour markets);

Evaluation

- OCA_S curve allows to study the relationship between (asymmetric) shocks & policy strategies in MUs (e.g., EZ).
- Partition shocks in: *i*) exogenous & permanent (e.g., changes in preferences, oil prices, technology, etc.); *ii*) endogenous & temporary (e.g., cyclical fluctuations).
- Set EZ below OCA_S line, assuming EZ non OCA (Fig. 12).
- Optimal reaction to exogenous shock points to >> flexibility (Figs. 1 & 9); optimal reaction to endogenous shock points to >> budgetary union (Fig. 10), such as:
- if shock exogenous, optimal reaction EZ → OCA zone is on horizontal arrow, i.e., ≫ flexibility (structural reforms goods & labour markets);
- if shocks endogenous, optimal reaction EZ → OCA is on vertical arrow, i.e., ≫ FU (→ political union).

- 4 同 6 4 日 6 4 日 6

Evaluation

Figure 12. Policies moving EZ in OCA zone

Giovanni Piersanti (Institute)

The Economics of Monetary Unions

December 2020 45 / 79

Evaluation

Real world under both shocks and actions needful in 2 fronts:
 ≫FU; ≫flexibility p, w, L.

- Real world under both shocks and actions needful in 2 fronts:
 >>FU; >>flexibility p, w, L.
- Optimal strategy is along the arrow North-East oriented in Fig. 12, with slope—shock typology:

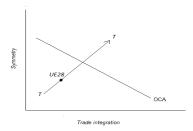
- Real world under both shocks and actions needful in 2 fronts:
 >>FU; >>flexibility p, w, L.
- Optimal strategy is along the arrow North-East oriented in Fig. 12, with slope—shock typology:
- if exogenous, slope bends downward and optimal reaction centered on ≫ feasibility;

- Real world under both shocks and actions needful in 2 fronts:
 >>FU; >>flexibility p, w, L.
- Optimal strategy is along the arrow North-East oriented in Fig. 12, with slope—shock typology:
- If exogenous, slope bends downward and optimal reaction centered on ≫ feasibility;
- if endogenous, slope rotates upward and optimal reaction centered on ≫ budgetary union (FU).

- Real world under both shocks and actions needful in 2 fronts:
 >>FU; >>flexibility p, w, L.
- Optimal strategy is along the arrow North-East oriented in Fig. 12, with slope—shock typology:
- If exogenous, slope bends downward and optimal reaction centered on ≫ feasibility;
- if endogenous, slope rotates upward and optimal reaction centered on ≫ budgetary union (FU).
 - Remark: i) flexibility managed by national governments (≫ integration not necessary for ≫ flexibility); ii) fiscal union ⇒ political union, not under control of the single-member country, but the member countries as a whole.

- Real world under both shocks and actions needful in 2 fronts:
 >>FU; >>flexibility p, w, L.
- Optimal strategy is along the arrow North-East oriented in Fig. 12, with slope—shock typology:
- If exogenous, slope bends downward and optimal reaction centered on ≫ feasibility;
- if endogenous, slope rotates upward and optimal reaction centered on ≫ budgetary union (FU).
 - Remark: i) flexibility managed by national governments (≫ integration not necessary for ≫ flexibility); ii) fiscal union ⇒ political union, not under control of the single-member country, but the member countries as a whole.
 - **Policy implication**: in EZ, exogenous shocks faced with national strategies, endogenous shocks \leftarrow EU strategy.

Evaluation


 The obsessed, single-minded EZ commitment to structural reforms for EMU crisis solution ⇒ i) very low (or no) willingness in EU countries to go in the direction of more fiscal & political union; ii) explains persistence & costs EZ crisis (→ asymmetric adjustment core vs. periphery).

- The obsessed, single-minded EZ commitment to structural reforms for EMU crisis solution ⇒ i) very low (or no) willingness in EU countries to go in the direction of more fiscal & political union; ii) explains persistence & costs EZ crisis (→ asymmetric adjustment core vs. periphery).
- Interaction C/B & trade (Figs. 5, 6, 7) suggests a positive relationship (TT line in Fig. 13) between the degree of trade integration and symmetric shocks.

- The obsessed, single-minded EZ commitment to structural reforms for EMU crisis solution ⇒ i) very low (or no) willingness in EU countries to go in the direction of more fiscal & political union; ii) explains persistence & costs EZ crisis (→ asymmetric adjustment core vs. periphery).
- Interaction C/B & trade (Figs. 5, 6, 7) suggests a positive relationship (TT line in Fig. 13) between the degree of trade integration and symmetric shocks.
- TT line reflect European Commission view (EC, 1990) ⇒ increase in symmetry countries ∈ MUs as trade integration increases (≫ trade integration → ≫ economic homogeneity & cyclical synchronization→ ≪ probability asymmetric shocks).

- The obsessed, single-minded EZ commitment to structural reforms for EMU crisis solution ⇒ i) very low (or no) willingness in EU countries to go in the direction of more fiscal & political union; ii) explains persistence & costs EZ crisis (→ asymmetric adjustment core vs. periphery).
- Interaction *C*/*B* & trade (Figs. 5, 6, 7) suggests a positive relationship (TT line in Fig. 13) between the degree of trade integration and symmetric shocks.
- TT line reflect European Commission view (EC, 1990) ⇒ increase in symmetry countries ∈ MUs as trade integration increases (≫ trade integration → ≫ economic homogeneity & cyclical synchronization→ ≪ probability asymmetric shocks).
- Combination TT and OCA lines highlights EC hypothesis time evolution costs/benefits in MUs (Fig. 13).

Evaluation

Figure 13. Evolution symmetry-trade integration in MUs. European Commission theory.

Giovanni Piersanti (Institute)

The Economics of Monetary Unions

December 2020 48 / 79

Evaluation

• Fig. 13 displays UE28 (EZ) progress towards OCA zone as trade integration increase, foreseeing inexorable & gainful (B > C) approach to EMU for all EU countries in the long run.

- Fig. 13 displays UE28 (EZ) progress towards OCA zone as trade integration increase, foreseeing inexorable & gainful (B > C) approach to EMU for all EU countries in the long run.
- Dynamics → OCA zone ⊂ endogenous component helping trade integration if countries choose ∈ MU.

- Fig. 13 displays UE28 (EZ) progress towards OCA zone as trade integration increase, foreseeing inexorable & gainful (B > C) approach to EMU for all EU countries in the long run.
- Dynamics → OCA zone ⊂ endogenous component helping trade integration if countries choose ∈ MU.
- Ratio: MU choice becomes self-fulfilling, making OCA criteria less binding, i.e., costs-benefits ratio changes, reducing C relative to B, raising convenience ∈ MU, ⇐ 'New' OCA theory (Frankel-Rose, 1998) ⊂ new classical theory (Lucas, Friedman).

- Fig. 13 displays UE28 (EZ) progress towards OCA zone as trade integration increase, foreseeing inexorable & gainful (B > C) approach to EMU for all EU countries in the long run.
- Dynamics → OCA zone ⊂ endogenous component helping trade integration if countries choose ∈ MU.
- Ratio: MU choice becomes self-fulfilling, making OCA criteria less binding, i.e., costs-benefits ratio changes, reducing C relative to B, raising convenience ∈ MU, ⇐= 'New' OCA theory (Frankel-Rose, 1998) ⊂ new classical theory (Lucas, Friedman).
- 'New' OCA: a) down-plays costs and plays up benefits ∈ MU (endogeneity monetary & trade integration process: Rose effect); b) provides the theoretical foundations for the current EMU institution & governance (e.g., Treaty of Maastricht, Treaty on the Functioning of EU); c) explains the single-minded stress on supply side (structural reforms) with no regard to demand side (counter-cyclical fiscal policy).

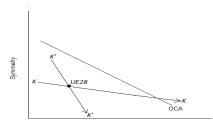
Evaluation

 Predictions ← 'new' OCA & EC too optimistic; others advanced antithetical hypothesis & predictions.

- Predictions ← 'new' OCA & EC too optimistic; others advanced antithetical hypothesis & predictions.
- Theory, known as Krugman's view (Krugman, 1991), maintains ≫ trade integration reduces (not raise) countries' symmetry.

- Predictions ← 'new' OCA & EC too optimistic; others advanced antithetical hypothesis & predictions.
- Theory, known as Krugman's view (Krugman, 1991), maintains ≫ trade integration reduces (not raise) countries' symmetry.
- Ratio: trade integration → ≫ economies of scale & regional specialization → ≫ heterogeneity economies ∈ MU and ≫ probability asymmetric shocks (Krugman, 1991, 1993; Krugman-Venables, 1996).

- Predictions ← 'new' OCA & EC too optimistic; others advanced antithetical hypothesis & predictions.
- Theory, known as Krugman's view (Krugman, 1991), maintains ≫ trade integration reduces (not raise) countries' symmetry.
- Ratio: trade integration → ≫ economies of scale & regional specialization → ≫ heterogeneity economies ∈ MU and ≫ probability asymmetric shocks (Krugman, 1991, 1993; Krugman-Venables, 1996).
- Outcome displayed in Fig. 14, where (downward sloping) lines KK & K'K' describe 2 possible scenarios \longleftarrow Krugman hypothesis.


- Predictions ← 'new' OCA & EC too optimistic; others advanced antithetical hypothesis & predictions.
- Theory, known as Krugman's view (Krugman, 1991), maintains ≫ trade integration reduces (not raise) countries' symmetry.
- Ratio: trade integration → ≫ economies of scale & regional specialization → ≫ heterogeneity economies ∈ MU and ≫ probability asymmetric shocks (Krugman, 1991, 1993; Krugman-Venables, 1996).
- Outcome displayed in Fig. 14, where (downward sloping) lines KK & K'K' describe 2 possible scenarios <= Krugman hypothesis.
- Scenario KK line (⇐slope < OCA line) → different result 'New' OCA-EC prediction: in the long-run EZ ∈ OCA zone despite ≫ specialization & asymmetric shocks.

Evaluation

- Predictions ← 'new' OCA & EC too optimistic; others advanced antithetical hypothesis & predictions.
- Theory, known as Krugman's view (Krugman, 1991), maintains ≫ trade integration reduces (not raise) countries' symmetry.
- Ratio: trade integration → ≫ economies of scale & regional specialization → ≫ heterogeneity economies ∈ MU and ≫ probability asymmetric shocks (Krugman, 1991, 1993; Krugman-Venables, 1996).
- Outcome displayed in Fig. 14, where (downward sloping) lines KK & K'K' describe 2 possible scenarios <= Krugman hypothesis.
- Scenario KK line (⇐slope < OCA line) → different result 'New' OCA-EC prediction: in the long-run EZ ∈ OCA zone despite ≫ specialization & asymmetric shocks.
- Scenario K'K' line (⇐ slope > OCA line) → opposite result 'New' OCA-EC prediction: probability EU countries ∈ zona OCA small.

50 / 79

Evaluation

Trade integration

Figure 14. Trade integration-symmetry in MUs. Krugman hypothesis

Giovanni Piersanti (Institute)

The Economics of Monetary Unions

December 2020 51 / 79

Evaluation

• Available empirical evidence on EZ \rightarrow OCA zona process suggests:

Evaluation

- Available empirical evidence on EZ \rightarrow OCA zona process suggests:
 - € setting up improved trade volume as for (5%, 20%): ⇒ modest movement EZ countries → OCA zone.

Evaluation

• Available empirical evidence on EZ \rightarrow OCA zona process suggests:

- Setting up improved trade volume as for (5%, 20%): ⇒ modest movement EZ countries → OCA zone.
- Average bilateral correlation coefficients (ρ_y) between cyclical components industrial production EZ countries augmented after 2008 crisis: ρ_y^(2008/2014) ≈ 0.64 > ρ_y^(1999/2007) ≈ 0.45 ≤ ρ_y^(1987/1999) ≈ 0.52; but effect temporary ⇐ strong contraction output 2009 in all countries following the Great Financial Crisis (GFC).

Evaluation

\bullet Available empirical evidence on EZ \rightarrow OCA zona process suggests:

- Setting up improved trade volume as for (5%, 20%): ⇒ modest movement EZ countries → OCA zone.
- Average bilateral correlation coefficients (ρ_y) between cyclical components industrial production EZ countries augmented after 2008 crisis: $\rho_y^{(2008/2014)} \simeq 0.64 > \rho_y^{(1999/2007)} \simeq 0.45 \le \rho_y^{(1987/1999)} \simeq 0.52$; but effect temporary \Leftarrow strong contraction output 2009 in all countries following the Great Financial Crisis (GFC).
- Is Flexibility labour market increased, particularly after 2010 crisis with employment protection indexes ≪ many EZ countries (e.g., *IR*, *EL*, *PT*, *ES*).

Evaluation

- \bullet Available empirical evidence on EZ \rightarrow OCA zona process suggests:
 - Setting up improved trade volume as for (5%, 20%): ⇒ modest movement EZ countries → OCA zone.
 - Average bilateral correlation coefficients (ρ_y) between cyclical components industrial production EZ countries augmented after 2008 crisis: $\rho_y^{(2008/2014)} \simeq 0.64 > \rho_y^{(1999/2007)} \simeq 0.45 \le \rho_y^{(1987/1999)} \simeq 0.52$; but effect temporary \Leftarrow strong contraction output 2009 in all countries following the Great Financial Crisis (GFC).
- Result: empirical support 'New' OCA theory (endogenous process monetary & trade integration) poor: only ≫ flexibility consistent with 'New' theory; integration not consistent; dubious ≫ symmetry. Maybe, sovereign debt crisis 2010 ≫ distance among EZ countries.

52 / 79

Fixed exchange rate regimes as incomplete MUs

Costs-Benefits analysis MUs → partition MUs in full (complete) MU (FMU) and incomplete MU (IMU). FMU ⊆ fiscal union (i.e., MU+FU); IMU ⊉ FU (i.e., member countries retain FP autonomy).

- Costs-Benefits analysis MUs → partition MUs in full (complete) MU (FMU) and incomplete MU (IMU). FMU ⊆ fiscal union (i.e., MU+FU); IMU ⊉ FU (i.e., member countries retain FP autonomy).
- IMU ⇒ a) ≫ costs compared to FMU; b) vulnerability liquidity/debt crises → long-run unsustainability.

- Costs-Benefits analysis MUs → partition MUs in full (complete) MU (FMU) and incomplete MU (IMU). FMU ⊆ fiscal union (i.e., MU+FU); IMU ⊉ FU (i.e., member countries retain FP autonomy).
- IMU ⇒ a) ≫ costs compared to FMU; b) vulnerability liquidity/debt crises → long-run unsustainability.
- IMU like fixed rate regime (*Ē*): monetary arrangement ⊂ similar constraints on national MPs.

- Costs-Benefits analysis MUs → partition MUs in full (complete) MU (FMU) and incomplete MU (IMU). FMU ⊆ fiscal union (i.e., MU+FU); IMU ⊉ FU (i.e., member countries retain FP autonomy).
- IMU ⇒ a) ≫ costs compared to FMU; b) vulnerability liquidity/debt crises → long-run unsustainability.
- IMU like fixed rate regime (*Ē*): monetary arrangement ⊂ similar constraints on national MPs.
- Special feature *E*-regime is long-run disintegration (e.g. Bretton Woods 1973, ERM 1992-93, Latin America 1994-95, South-East Asia 1997-98, Argentina 2002).

- Costs-Benefits analysis MUs → partition MUs in full (complete) MU (FMU) and incomplete MU (IMU). FMU ⊆ fiscal union (i.e., MU+FU); IMU ⊉ FU (i.e., member countries retain FP autonomy).
- IMU ⇒ a) ≫ costs compared to FMU; b) vulnerability liquidity/debt crises → long-run unsustainability.
- IMU like fixed rate regime (*Ē*): monetary arrangement ⊂ similar constraints on national MPs.
- Special feature *E*-regime is long-run disintegration (e.g. Bretton Woods 1973, ERM 1992-93, Latin America 1994-95, South-East Asia 1997-98, Argentina 2002).
- Fragility $\overline{\mathcal{E}}$ -regime \iff 2 basic factors: 1) credibility; 2) foreign reserve stock (FR).

Fixed exchange rate regimes as incomplete MUs

- Costs-Benefits analysis MUs → partition MUs in full (complete) MU (FMU) and incomplete MU (IMU). FMU ⊆ fiscal union (i.e., MU+FU); IMU ⊉ FU (i.e., member countries retain FP autonomy).
- IMU ⇒ a) ≫ costs compared to FMU; b) vulnerability liquidity/debt crises → long-run unsustainability.
- IMU like fixed rate regime (*Ē*): monetary arrangement ⊂ similar constraints on national MPs.
- Special feature *E*-regime is long-run disintegration (e.g. Bretton Woods 1973, ERM 1992-93, Latin America 1994-95, South-East Asia 1997-98, Argentina 2002).
- Fragility $\overline{\mathcal{E}}$ -regime \iff 2 basic factors: 1) credibility; 2) foreign reserve stock (FR).
- Factor (1) ⇐ partial (or not full) credibility to *E* commitment ⇐ shock unpredictability → to change the fixed parity to fulfil other policy targets (e.g., U^F, Y^P, ΔY/Y).

Giovanni Piersanti (Institute)

53 / 79

Fixed exchange rate regimes as incomplete MUs

Factor (2) ⇐ boundedness FR stock (¬∞) to sustain the fixed parity.

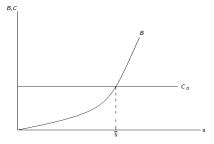
47 ▶

- Factor (2) ⇐ boundedness FR stock (¬∞) to sustain the fixed parity.
- Convolution (1) & (2) \rightarrow CB to change $\left(\overline{\mathcal{E}}\right)$.

- Factor (2) ⇐ boundedness FR stock (¬∞) to sustain the fixed parity.
- Convolution (1) & (2) \rightarrow CB to change $(\overline{\mathcal{E}})$.
- Model: Take country in $(\overline{\mathcal{E}})$ regime, able to sustain $(\overline{\mathcal{E}})$ as long as (asymmetric) shock \rightarrow CA worsening (e.g., $\gg w, p \rightarrow \ll$ competitiveness \land deficit CA).

- Factor (2) ⇐ boundedness FR stock (¬∞) to sustain the fixed parity.
- Convolution (1) & (2) \rightarrow CB to change $(\bar{\mathcal{E}})$.
- **Model**: Take country in $(\overline{\mathcal{E}})$ regime, able to sustain $(\overline{\mathcal{E}})$ as long as (asymmetric) shock \rightarrow CA worsening (e.g., $\gg w, p \rightarrow \ll$ competitiveness \land deficit CA).
- Correction CA deficit in 2 ways: a) cut D without changing $(\overline{\mathcal{E}})$ and undermine credibility; b) abandon $(\overline{\mathcal{E}})$ and loose reputation.

Fixed exchange rate regimes as incomplete MUs


- Factor (2) ⇐ boundedness FR stock (¬∞) to sustain the fixed parity.
- Convolution (1) & (2) \rightarrow CB to change $(\overline{\mathcal{E}})$.
- **Model**: Take country in $(\overline{\mathcal{E}})$ regime, able to sustain $(\overline{\mathcal{E}})$ as long as (asymmetric) shock \rightarrow CA worsening (e.g., $\gg w, p \rightarrow \ll$ competitiveness \land deficit CA).
- Correction CA deficit in 2 ways: a) cut D without changing $(\overline{\mathcal{E}})$ and undermine credibility; b) abandon $(\overline{\mathcal{E}})$ and loose reputation.

• Strategy (a) \Leftarrow restrictive FP $\rightarrow \gg T$ and/or $\ll G \rightarrow Y \downarrow$, $U \uparrow$ (recession). Strategy (b) \Leftarrow devaluation (i.e., parity change) $\rightarrow \gg X$ and CA improvement with no recession.

イロト 人間ト イヨト イヨト

- Factor (2) \iff boundedness FR stock $(\neg \infty)$ to sustain the fixed parity.
- Convolution (1) & (2) \rightarrow CB to change $\left(\overline{\mathcal{E}}\right)$.
- Model: Take country in $(\overline{\mathcal{E}})$ regime, able to sustain $(\overline{\mathcal{E}})$ as long as (asymmetric) shock \rightarrow CA worsening (e.g., $\gg w, p \rightarrow \ll$ competitiveness \land deficit CA).
- Correction CA deficit in 2 ways: a) cut D without changing $(\overline{\mathcal{E}})$ and undermine credibility; b) abandon $(\overline{\mathcal{E}})$ and loose reputation.
- Strategy (a) \Leftarrow restrictive FP $\rightarrow \gg T$ and/or $\ll G \rightarrow Y \downarrow$, $U \uparrow$ (recession). Strategy (b) \Leftarrow devaluation (i.e., parity change) $\rightarrow \gg X$ and CA improvement with no recession.
- Choice (a) or (b) conditional on threshold shock size (\$\overline{s}\$) | B = C ⇒ (a) = (b). Incentives option (a) or (b) in Fig. 15.

Fixed exchange rate regimes as incomplete MUs

Figure 15. Costs-Benefits devaluation

Giovanni Piersanti (Institute)

The Economics of Monetary Unions

December 2020 55 / 79

Fixed exchange rate regimes as incomplete MUs

B curve displays relationship between devaluation & shock size (s):
 ≫ s, ≫ C from option (a) (→ recession ⇐= ≪ D) and ≫ B from option (b) (∵ devaluation →≫ X, ≫ D, ≫ Y); C₀ line is devaluation cost (constant) from reputation loss ← parity change; s
 threshold shock size | B = C.

Fixed exchange rate regimes as incomplete MUs

- B curve displays relationship between devaluation & shock size (s):
 ≫ s, ≫ C from option (a) (→ recession ⇐= ≪ D) and ≫ B from option (b) (∵ devaluation →≫ X, ≫ D, ≫ Y); C₀ line is devaluation cost (constant) from reputation loss ← parity change; s
 threshold shock size| B = C.
- Fig. 15 reveals:

Giovanni Piersanti (Institute)

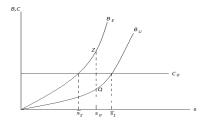
- B curve displays relationship between devaluation & shock size (s):
 ≫ s, ≫ C from option (a) (→ recession ⇐= ≪ D) and ≫ B from option (b) (∵ devaluation →≫ X, ≫ D, ≫ Y); C₀ line is devaluation cost (constant) from reputation loss ← parity change; s
 threshold shock size | B = C.
- Fig. 15 reveals:
- parity (Ē) credible & sustainable ∀s < s̄: s < s̄ ⇒ C > B.
 Government does not devalue; credibility Ē commitment confirmed; currency not open to speculative attacks and Ē sustainable;

- B curve displays relationship between devaluation & shock size (s):
 ≫ s, ≫ C from option (a) (→ recession ⇐= ≪ D) and ≫ B from option (b) (∵ devaluation →≫ X, ≫ D, ≫ Y); C₀ line is devaluation cost (constant) from reputation loss ← parity change; s
 threshold shock size | B = C.
- Fig. 15 reveals:
- parity (Ē) credible & sustainable ∀s < \$\overline{s}\$: s < \$\overline{s}\$ ⇒ C > B.
 Government does not devalue; credibility \$\overline{\mathcal{E}}\$ commitment confirmed; currency not open to speculative attacks and \$\overline{\mathcal{E}}\$ sustainable;
 parity (\$\overline{\mathcal{E}}\$) not credible \$\forall s > \$\overline{s}\$: s > \$\overline{s}\$ ⇒ \$B > C\$. Government devalues; credibility (\$\overline{\mathcal{E}}\$) undermined and currency under speculative attack; markets' run at CB reduces \$\mathcal{FR}\$ stock → CB abandon \$\overline{\mathcal{E}}\$.

Fixed exchange rate regimes as incomplete MUs

- B curve displays relationship between devaluation & shock size (s):
 ≫ s, ≫ C from option (a) (→ recession ⇐= ≪ D) and ≫ B from option (b) (∵ devaluation →≫ X, ≫ D, ≫ Y); C₀ line is devaluation cost (constant) from reputation loss ← parity change; s
 threshold shock size| B = C.
- Fig. 15 reveals:
- parity $(\overline{\mathcal{E}})$ credible & sustainable $\forall s < \overline{s}: s < \overline{s} \implies C > B.$
- Government does not devalue; credibility \mathcal{E} commitment confirmed; currency not open to speculative attacks and $\overline{\mathcal{E}}$ sustainable; • parity $(\overline{\mathcal{E}})$ not credible $\forall s > \overline{s}: s > \overline{s} \implies B > C$. Government devalues; credibility $(\overline{\mathcal{E}})$ undermined and currency under speculative attack; markets' run at CB reduces FR stock \rightarrow CB abandon $\overline{\mathcal{E}}$. • Fig. 15 describes a unique equilibrium scenario where $\overline{\mathcal{E}}$ collapse

 Fig. 15 describes a unique equilibrium scenario where *z* collapse exactly foreseen given *s* (first-generation models). *D* ≤ *z* ≤ *z* ≤ *z* Giovanni Piersanti (Institute)
 The Economics of Monetary Unions
 December 2020


56 / 79

Fixed exchange rate regimes as incomplete MUs

• Scenario more complex (Fig.16) if \bar{s} not fixed but linked to market devaluation expectations (second-generation models).

Fixed exchange rate regimes as incomplete MUs

• Scenario more complex (Fig.16) if \bar{s} not fixed but linked to market devaluation expectations (second-generation models).

Figure 16. Multiple equilibria in Forex market

Giovanni Piersanti (Institute)

Fixed exchange rate regimes as incomplete MUs

• Fig. 16 \subset 2 curves B: B_U curve \Leftarrow unexpected devaluation hypothesis by markets $\forall s \leq \bar{s}_1$; B_E curve \Leftarrow expected devaluation hypothesis by markets.

- Fig. 16 ⊂ 2 curves B: B_U curve ⇐ unexpected devaluation hypothesis by markets ∀s ≤ s
 ₁; B_E curve ⇐ expected devaluation hypothesis by markets.
- B_E curve above B_U curve: expected devaluation \rightarrow speculators to attack CB (selling national currency to buy foreign currency) to avoid capital losses \Leftarrow devaluation. CB forced to reduce FR & raise *i* to maintain the parity. *i* increase costly ($\because \rightarrow Y \downarrow U \uparrow$ (recession); devaluation expectations \uparrow and *B* curve \circlearrowleft (i.e., \bar{s} shrinks: $\bar{s}_2 < \bar{s}_1$). Conversely, if devaluation not expected, speculators do not run at CB and *B* curve unchanged in B_U , i.e., devaluation $\forall \bar{s} > \bar{s}_1$.

Fixed exchange rate regimes as incomplete MUs

- Fig. 16 ⊂ 2 curves B: B_U curve ⇐ unexpected devaluation hypothesis by markets ∀s ≤ s
 ₁; B_E curve ⇐ expected devaluation hypothesis by markets.
- B_E curve above B_U curve: expected devaluation → speculators to attack CB (selling national currency to buy foreign currency) to avoid capital losses ⇐ devaluation. CB forced to reduce FR & raise *i* to maintain the parity. *i* increase costly (∵→ Y ↓ U ↑ (recession); devaluation expectations ↑ and B curve (i.e., \$\vec{s}\$ shrinks: \$\vec{s}_2 < \$\vec{s}_1\$). Conversely, if devaluation not expected, speculators do not run at CB and B curve unchanged in B_U, i.e., devaluation ∀\$\vec{s} > \$\vec{s}_1\$.
- Fig. 16 splits s-axis in 3 zones: $s < \overline{s}_2$; $\overline{s}_2 \le s \le \overline{s}_1$; $s > \overline{s}_1$.

イロト イ理ト イヨト イヨト

Fixed exchange rate regimes as incomplete MUs

- Fig. 16 ⊂ 2 curves B: B_U curve ⇐ unexpected devaluation hypothesis by markets ∀s ≤ s
 ₁; B_E curve ⇐ expected devaluation hypothesis by markets.
- B_E curve above B_U curve: expected devaluation → speculators to attack CB (selling national currency to buy foreign currency) to avoid capital losses ⇐ devaluation. CB forced to reduce FR & raise *i* to maintain the parity. *i* increase costly (∵→ Y ↓ U ↑ (recession); devaluation expectations ↑ and B curve (i.e., \$\vec{s}\$ shrinks: \$\vec{s}_2 < \$\vec{s}_1\$). Conversely, if devaluation not expected, speculators do not run at CB and B curve unchanged in B_U, i.e., devaluation ∀\$\vec{s} > \$\vec{s}_1\$.
- Fig. 16 splits s-axis in 3 zones: $s < \bar{s}_2$; $\bar{s}_2 \le s \le \bar{s}_1$; $s > \bar{s}_1$.

58 / 79

Fragility Incomplete MUs Fixed exchange rate regimes as incomplete MUs

• $s > \bar{s}_1$ zone (severe shock): devaluation sure (B > C); CB under attack (parity not credible); FR stock rapidly depleted; parity $(\bar{\mathcal{E}})$ abandoned and devaluation expectation validated. Scenario $s > \bar{s}_1$ bad equilibrium: devaluation inescapable & $\bar{\mathcal{E}}$ unsustainable and challenged by markets. $s > \bar{s}_1$ zone $\equiv hell$.

- $s > \bar{s}_1$ zone (severe shock): devaluation sure (B > C); CB under attack (parity not credible); FR stock rapidly depleted; parity $(\bar{\mathcal{E}})$ abandoned and devaluation expectation validated. Scenario $s > \bar{s}_1$ bad equilibrium: devaluation inescapable & $\bar{\mathcal{E}}$ unsustainable and challenged by markets. $s > \bar{s}_1$ zone \equiv hell.
- s
 ₂ ≤ s ≤ s
 ₁ zone (intermediate shock): devaluation uncertain & multiple equilibria (Q, Z).

- $s > \bar{s}_1$ zone (severe shock): devaluation sure (B > C); CB under attack (parity not credible); FR stock rapidly depleted; parity $(\bar{\mathcal{E}})$ abandoned and devaluation expectation validated. Scenario $s > \bar{s}_1$ bad equilibrium: devaluation inescapable & $\bar{\mathcal{E}}$ unsustainable and challenged by markets. $s > \bar{s}_1$ zone \equiv hell.
- s
 ₂ ≤ s ≤ s
 ₁ zone (intermediate shock): devaluation uncertain & multiple equilibria (Q, Z).
- In Q: devaluation not expected (parity credible & not under attack); government does not devalue (C > B); CB does not raise i; CA and/or d deficit financing easy. Scenario Q consistent with markets expectations and self-fulfilling; economy in *good equilibrium*.

- $s > \bar{s}_1$ zone (severe shock): devaluation sure (B > C); CB under attack (parity not credible); FR stock rapidly depleted; parity $(\bar{\mathcal{E}})$ abandoned and devaluation expectation validated. Scenario $s > \bar{s}_1$ bad equilibrium: devaluation inescapable & $\bar{\mathcal{E}}$ unsustainable and challenged by markets. $s > \bar{s}_1$ zone \equiv hell.
- s
 ₂ ≤ s ≤ s
 ₁ zone (intermediate shock): devaluation uncertain & multiple equilibria (Q, Z).
- In Q: devaluation not expected (parity credible & not under attack); government does not devalue (C > B); CB does not raise i; CA and/or d deficit financing easy. Scenario Q consistent with markets expectations and self-fulfilling; economy in good equilibrium.
- In Z: devaluation expected & currency under attack; government devalues (B > C); FR↓; devaluation inevitable. Scenario Z consistent with markets expectations and self-fulfilling; economy in bad equilibrium.

Fixed exchange rate regimes as incomplete MUs

s
 *s*₂ ≤ s ≤ s
 *s*₁ zone ≡ *purgatory*: multiple equilibria fully supported by self-fulfilling market expectations.

- s
 ₂ ≤ s ≤ s
 ₁ zone ≡ purgatory: multiple equilibria fully supported by self-fulfilling market expectations.
- Expectations subject to sudden changes, able to let the economy jump from Q to Z for any s. ∀s₀ ∈ s : s₀ → Q ∨Z, the economy can jump from Q to Z if markets change the country's trustworthiness:
 ⇒ fixed-peg regimes deeply fragile.

- s
 ₂ ≤ s ≤ s
 ₁ zone ≡ purgatory: multiple equilibria fully supported by self-fulfilling market expectations.
- Expectations subject to sudden changes, able to let the economy jump from Q to Z for any s. ∀s₀ ∈ s : s₀ → Q ∨Z, the economy can jump from Q to Z if markets change the country's trustworthiness:
 ⇒ fixed-peg regimes deeply fragile.
- 2 solutions for fixed-rate regimes fragility (*bipolar view*): 1) MUs (*hard pegs*); 2) flexible exchange rates.

- s
 ₂ ≤ s ≤ s
 ₁ zone ≡ purgatory: multiple equilibria fully supported by self-fulfilling market expectations.
- Expectations subject to sudden changes, able to let the economy jump from Q to Z for any s. ∀s₀ ∈ s : s₀ → Q ∨Z, the economy can jump from Q to Z if markets change the country's trustworthiness:
 ⇒ fixed-peg regimes deeply fragile.
- 2 solutions for fixed-rate regimes fragility (*bipolar view*): 1) MUs (*hard pegs*); 2) flexible exchange rates.
- MU solution removes the source of speculative attacks on FX. Option

 fundamental for moving ERM → EMU. But EMU ∈ IMU ⊂ same fragility to financial markets.

- s
 ₂ ≤ s ≤ s
 ₁ zone ≡ purgatory: multiple equilibria fully supported by self-fulfilling market expectations.
- Expectations subject to sudden changes, able to let the economy jump from Q to Z for any s. ∀s₀ ∈ s : s₀ → Q ∨Z, the economy can jump from Q to Z if markets change the country's trustworthiness:
 ⇒ fixed-peg regimes deeply fragile.
- 2 solutions for fixed-rate regimes fragility (*bipolar view*): 1) MUs (*hard pegs*); 2) flexible exchange rates.
- MU solution removes the source of speculative attacks on FX. Option

 fundamental for moving ERM → EMU. But EMU ∈ IMU ⊂ same
 fragility to financial markets.
- Exchange rate flexibility (option 2) restore MP autonomy but: *i*) does not remove the source of speculative attacks (Aghion et al., 2000, 2004; Piersanti, 2012); *ii*) opens the countries to external shock vulnerability (Calvo-Reinhart, 2002; McKinnon-Schnabl, 2002).

Fixed exchange rate regimes as incomplete MUs

Flaws solutions (1) & (2) and scepticism bipolar view → some countries (India, China, Malaysia, Chile) to capital controls; others (Hong Kong, Argentina 1991-2002 → \$, Bulgaria, 1997-2011, Estonia, 1992-2011, Lithuania, 1994-2015 → €) towards higher devaluation costs through *currency board* systems (CBS): hard peg regimes where fixed parity established by law; MB fully backed by the anchor currency; devaluation costs very high. But:

- Flaws solutions (1) & (2) and scepticism *bipolar view* → some countries (India, China, Malaysia, Chile) to capital controls; others (Hong Kong, Argentina 1991-2002 → \$, Bulgaria, 1997-2011, Estonia, 1992-2011, Lithuania, 1994-2015 → €) towards higher devaluation costs through *currency board* systems (CBS): hard peg regimes where fixed parity established by law; MB fully backed by the anchor currency; devaluation costs very high. But:
- long-run consistency between capital controls & growing economic and financial integration dubious;

- Flaws solutions (1) & (2) and scepticism *bipolar view* → some countries (India, China, Malaysia, Chile) to capital controls; others (Hong Kong, Argentina 1991-2002 → \$, Bulgaria, 1997-2011, Estonia, 1992-2011, Lithuania, 1994-2015 → €) towards higher devaluation costs through *currency board* systems (CBS): hard peg regimes where fixed parity established by law; MB fully backed by the anchor currency; devaluation costs very high. But:
- long-run consistency between capital controls & growing economic and financial integration dubious;
- recent experience CBS crises (Hong Kong, 1998, Argentina 2002) signals CBS do not shield from speculative attacks.

Fixed exchange rate regimes as incomplete MUs

- Flaws solutions (1) & (2) and scepticism *bipolar view* → some countries (India, China, Malaysia, Chile) to capital controls; others (Hong Kong, Argentina 1991-2002 → \$, Bulgaria, 1997-2011, Estonia, 1992-2011, Lithuania, 1994-2015 → €) towards higher devaluation costs through *currency board* systems (CBS): hard peg regimes where fixed parity established by law; MB fully backed by the anchor currency; devaluation costs very high. But:
- long-run consistency between capital controls & growing economic and financial integration dubious;
- recent experience CBS crises (Hong Kong, 1998, Argentina 2002) signals CBS do not shield from speculative attacks.
- The only efficient solution to fixed-rate regimes & IMU fragility is FMU (i.e., MU+FU).

イロト 人間ト イヨト イヨト

Fixed exchange rate regimes as incomplete MUs

- Flaws solutions (1) & (2) and scepticism *bipolar view* → some countries (India, China, Malaysia, Chile) to capital controls; others (Hong Kong, Argentina 1991-2002 → \$, Bulgaria, 1997-2011, Estonia, 1992-2011, Lithuania, 1994-2015 → €) towards higher devaluation costs through *currency board* systems (CBS): hard peg regimes where fixed parity established by law; MB fully backed by the anchor currency; devaluation costs very high. But:
- long-run consistency between capital controls & growing economic and financial integration dubious;
- recent experience CBS crises (Hong Kong, 1998, Argentina 2002) signals CBS do not shield from speculative attacks.
- The only efficient solution to fixed-rate regimes & IMU fragility is FMU (i.e., MU+FU).
- EMU/EZ ∈ IMU (FU ⊈ EMU) ⊆ (intrinsic) fragility similar to fixed-rate regimes (Fig. 17).

Giovanni Piersanti (Institute)

December 2020 61 / 79

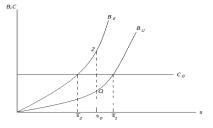


Figure 17. Multiple equilibria in IMUs

• EMU/EZ \subset *i*) unique CB (ECB); *ii*) independent fiscal authorities.

- EMU/EZ \subset *i*) unique CB (ECB); *ii*) independent fiscal authorities.
- Noteworthy feature EMU: sovereign debt securities in a currency (€) not under the control of member countries. Countries ∈ EMU/EZ prone to speculative attacks → liquidity/debt crises & multiple equilibria (Fig. 17).

- $EMU/EZ \subset i$) unique CB (ECB); *ii*) independent fiscal authorities.
- Noteworthy feature EMU: sovereign debt securities in a currency (€) not under the control of member countries. Countries ∈ EMU/EZ prone to speculative attacks → liquidity/debt crises & multiple equilibria (Fig. 17).
- Fig. 17 \subset 2 curves *B* & shock size (*s*) \Leftarrow recession, such as $\ll (Y \land T) \rightarrow \gg (d \land PD)$.

- $EMU/EZ \subset i$) unique CB (ECB); *ii*) independent fiscal authorities.
- Noteworthy feature EMU: sovereign debt securities in a currency (€) not under the control of member countries. Countries ∈ EMU/EZ prone to speculative attacks → liquidity/debt crises & multiple equilibria (Fig. 17).
- Fig. 17 \subset 2 curves *B* & shock size (*s*) \Leftarrow recession, such as $\ll (Y \land T) \rightarrow \gg (d \land PD)$.
- Model in Fig.17 built on 2 assumptions:

- EMU/EZ \subset *i*) unique CB (ECB); *ii*) independent fiscal authorities.
- Noteworthy feature EMU: sovereign debt securities in a currency (€) not under the control of member countries. Countries ∈ EMU/EZ prone to speculative attacks → liquidity/debt crises & multiple equilibria (Fig. 17).
- Fig. 17 \subset 2 curves *B* & shock size (*s*) \Leftarrow recession, such as $\ll (Y \land T) \rightarrow \gg (d \land PD)$.
- Model in Fig.17 built on 2 assumptions:
- default $PD \implies : i)$ both costs (C) (\Leftarrow reputation loss and hardship with bond and/or debt rollover) and benefits (B) ($\Leftarrow \ll C$ from restrictive policies (*austerity*) $\rightarrow \gg T$ and/or $\ll G$ to reduce $d \land PD$); *ii*) constant costs (C_0) and benefits increasing with *s*, i.e., > s > B; *iii*) net benefit (B - C) drives government's choice.

イロト 人間ト イヨト イヨト

- $EMU/EZ \subset i$) unique CB (ECB); *ii*) independent fiscal authorities.
- Noteworthy feature EMU: sovereign debt securities in a currency (€) not under the control of member countries. Countries ∈ EMU/EZ prone to speculative attacks → liquidity/debt crises & multiple equilibria (Fig. 17).
- Fig. 17 \subset 2 curves *B* & shock size (*s*) \Leftarrow recession, such as $\ll (Y \land T) \rightarrow \gg (d \land PD).$
- Model in Fig.17 built on 2 assumptions:

default PD ⇒: i) both costs (C) (⇐ reputation loss and hardship with bond and/or debt rollover) and benefits (B) (⇐ ≪ C from restrictive policies (*austerity*) → ≫ T and/or ≪ G to reduce d ∧ PD); ii) constant costs (C₀) and benefits increasing with s, i.e., > s > B; iii) net benefit (B - C) drives government's choice.
markets (investors) include (B - C) government into their solvency

a markets (investors) include (B - C) government into their solvency expectations about *PD*.

• B_U curve is default benefit if not expected by markets. B_U shows shock occurrence very strong $(s > \bar{s}_1)$ to occasion default (total or partial debt cut, say, 50%). Position B_U curve given by: • B_U curve is default benefit if not expected by markets. B_U shows shock occurrence very strong $(s > \bar{s}_1)$ to occasion default (total or partial debt cut, say, 50%). Position B_U curve given by:

() initial level PD: $> PD > B \forall PD \iff$ default $\rightarrow B_U \circlearrowleft$.

- B_U curve is default benefit if not expected by markets. B_U shows shock occurrence very strong $(s > \bar{s}_1)$ to occasion default (total or partial debt cut, say, 50%). Position B_U curve given by:
- initial level PD: > PD > $B \forall PD \iff$ default $\rightarrow B_U \circlearrowleft$.
- Efficiency fiscal system: $\langle T \forall Y \rangle PD/Y \rangle B \forall PD \iff default \rightarrow B_U \circlearrowleft$.

- B_U curve is default benefit if not expected by markets. B_U shows shock occurrence very strong $(s > \bar{s}_1)$ to occasion default (total or partial debt cut, say, 50%). Position B_U curve given by:
- initial level PD: > PD > B $\forall PD \iff$ default $\rightarrow B_U$ \circlearrowright .
- Efficiency fiscal system: $\langle T \forall Y \rangle PD/Y \rangle B \forall PD \iff default \rightarrow B_U \circlearrowleft$.
- Solution Foreign debt level (FD): $> FD > B \forall PD \iff default \rightarrow B_U \circlearrowleft$.

- B_U curve is default benefit if not expected by markets. B_U shows shock occurrence very strong $(s > \bar{s}_1)$ to occasion default (total or partial debt cut, say, 50%). Position B_U curve given by:
- initial level PD: > PD > $B \forall PD \iff$ default $\rightarrow B_U \circlearrowleft$.
- Efficiency fiscal system: $\langle T \forall Y \rangle PD/Y \rangle B \forall PD \iff default \rightarrow B_U \circlearrowleft$.
- § Foreign debt level (FD): $> FD > B \forall PD \iff default \rightarrow B_U \circlearrowleft$.
- B_E curve is default benefit if expected by markets. B_E above B_U as default expectation → investors selling governments bonds: i ↑→ (d ∧ PD) ↑ ⇒ ≫ C recession from *austerity* & ≫ B ⇐= defaulting: ∀s, ≫ B → curve B ♂.

(日) (同) (三) (三)

• Fig. 17 splits *s*-axis in 3 zones (\approx Fig. 16):

э

Image: A matrix of the second seco

- Fig. 17 splits *s*-axis in 3 zones (\eqsim Fig. 16):
- s ≤ s
 ₂ zone (weak shock, e.g., shock on DE, AT, BE, LU, NL ← debt crisis 2010): net benefit default (B C) < 0; government rules out default option; investors willing to hold PD securities (unexpected default); no-default equilibrium sustainable & government with no liquidity shortage and/or debt rollover hardships.

- Fig. 17 splits *s*-axis in 3 zones (\eqsim Fig. 16):
- s ≤ s
 ₂ zone (weak shock, e.g., shock on DE, AT, BE, LU, NL ← debt crisis 2010): net benefit default (B C) < 0; government rules out default option; investors willing to hold PD securities (unexpected default); no-default equilibrium sustainable & government with no liquidity shortage and/or debt rollover hardships.
- $s \ge \bar{s}_1$ zone (severe shock, e.g., shock on *EL* 2010): (B C) > 0; government inclined to debt *defaulting*; markets expect default and reduce exposition *PD* securities; government in hardship with debt rollover and in liquidity crisis, default sure.

- Fig. 17 splits *s*-axis in 3 zones (\eqsim Fig. 16):
- s ≤ s
 ₂ zone (weak shock, e.g., shock on DE, AT, BE, LU, NL ← debt crisis 2010): net benefit default (B C) < 0; government rules out default option; investors willing to hold PD securities (unexpected default); no-default equilibrium sustainable & government with no liquidity shortage and/or debt rollover hardships.
- s ≥ s
 ₁ zone (severe shock, e.g., shock on EL 2010): (B − C) > 0; government inclined to debt *defaulting*; markets expect default and reduce exposition PD securities; government in hardship with debt rollover and in liquidity crisis, default sure.
- $\bar{s}_2 < s < \bar{s}_1$ zone (intermediate shock, e.g., shock on *IR*, *PT*, *ES*, *IT* 2010): $(B C) \stackrel{<}{\leq} 0$ & multiple equilibria (Q, Z). Two scenarios:

- Fig. 17 splits *s*-axis in 3 zones (\eqsim Fig. 16):
- s ≤ s
 ₂ zone (weak shock, e.g., shock on DE, AT, BE, LU, NL ← debt crisis 2010): net benefit default (B C) < 0; government rules out default option; investors willing to hold PD securities (unexpected default); no-default equilibrium sustainable & government with no liquidity shortage and/or debt rollover hardships.
- $s \ge \bar{s}_1$ zone (severe shock, e.g., shock on *EL* 2010): (B C) > 0; government inclined to debt *defaulting*; markets expect default and reduce exposition *PD* securities; government in hardship with debt rollover and in liquidity crisis, default sure.
- $\bar{s}_2 < s < \bar{s}_1$ zone (intermediate shock, e.g., shock on *IR*, *PT*, *ES*, *IT* 2010): $(B C) \stackrel{\leq}{\leq} 0$ & multiple equilibria (Q, Z). Two scenarios:
- 1) if investors optimistic (default unexpected) equilibrium in Q: net benefit (B - C) < 0; government trusted; investors hold sovereign bonds; liquidity sizeable; no-default equilibrium sustainable &

self-fulfilling: economy in good equilibrium Giovanni Piersanti (Institute) The Economics of Monetary Unions

 2) If investor pessimistic (default expected) equilibrium in Z: net benefit (B - C) > 0; government in danger of default; investors not willing to hold sovereign bonds; liquidity shortage; default unavoidable & self-fulfilling; economy in *bad equilibrium*.

- 2) If investor pessimistic (default expected) equilibrium in Z: net benefit (B - C) > 0; government in danger of default; investors not willing to hold sovereign bonds; liquidity shortage; default unavoidable & self-fulfilling; economy in *bad equilibrium*.
- $\bar{s}_2 < s < \bar{s}_1$ zone under default uncertainty & markets sentiments (optimistic/pessimistic) primary source sudden jump across equilibrium states: $good \leftrightarrow bad \forall s_0 \in (\bar{s}_2, \bar{s}_1)$.

- 2) If investor pessimistic (default expected) equilibrium in Z: net benefit (B - C) > 0; government in danger of default; investors not willing to hold sovereign bonds; liquidity shortage; default unavoidable & self-fulfilling; economy in *bad equilibrium*.
- $\bar{s}_2 < s < \bar{s}_1$ zone under default uncertainty & markets sentiments (optimistic/pessimistic) primary source sudden jump across equilibrium states: $good \leftrightarrow bad \forall s_0 \in (\bar{s}_2, \bar{s}_1)$.
- Multiple equilibrium zone in IMUs ⇐ liquidity constraint member countries (≂ fixed-rate regimes). If CB (ECB) buys debt securities providing the required liquidity for debt repayment at maturity (LLR), default unexpected, B_E and B_U coincide and multiple equilibria fade away: markets not able to force the government into default ∀s ≤ s₁.

- 2) If investor pessimistic (default expected) equilibrium in Z: net benefit (B - C) > 0; government in danger of default; investors not willing to hold sovereign bonds; liquidity shortage; default unavoidable & self-fulfilling; economy in *bad equilibrium*.
- $\bar{s}_2 < s < \bar{s}_1$ zone under default uncertainty & markets sentiments (optimistic/pessimistic) primary source sudden jump across equilibrium states: good \longleftrightarrow bad $\forall s_0 \in (\bar{s}_2, \bar{s}_1)$.
- Multiple equilibrium zone in IMUs ⇐ liquidity constraint member countries (≂ fixed-rate regimes). If CB (ECB) buys debt securities providing the required liquidity for debt repayment at maturity (LLR), default unexpected, B_E and B_U coincide and multiple equilibria fade away: markets not able to force the government into default ∀s ≤ s
 ₁.
- Conversely, if CB does not step in, B_E above B_U , and multiple equilibria emerge.

- 2) If investor pessimistic (default expected) equilibrium in Z: net benefit (B - C) > 0; government in danger of default; investors not willing to hold sovereign bonds; liquidity shortage; default unavoidable & self-fulfilling; economy in *bad equilibrium*.
- $\bar{s}_2 < s < \bar{s}_1$ zone under default uncertainty & markets sentiments (optimistic/pessimistic) primary source sudden jump across equilibrium states: $good \leftrightarrow bad \forall s_0 \in (\bar{s}_2, \bar{s}_1)$.
- Multiple equilibrium zone in IMUs ⇐ liquidity constraint member countries (≂ fixed-rate regimes). If CB (ECB) buys debt securities providing the required liquidity for debt repayment at maturity (LLR), default unexpected, B_E and B_U coincide and multiple equilibria fade away: markets not able to force the government into default ∀s ≤ s
 ₁.
- Conversely, if CB does not step in, B_E above B_U , and multiple equilibria emerge.
- In bad equilibrium, IMUs ⊂ 2 other negative features: banking crises; lack of automatic stabilizers.

Giovanni Piersanti (Institute)

The Economics of Monetary Unions

December 2020 66 / 79

- **Banking crises**: investors' exit from sovereign bond market \implies :
 - a) p ↓ & capital losses → banks' balance sheet worsening, being they a major investor in government bonds;
 - b) $M \downarrow$ (liquidity shrinkage) \rightarrow troubles with deposit rollover except for $\gg i$.

- **Banking crises**: investors' exit from sovereign bond market \implies :
 - a) $p \downarrow \&$ capital losses \rightarrow banks' balance sheet worsening, being they a major investor in government bonds;
 - b) $M \downarrow$ (liquidity shrinkage) \rightarrow troubles with deposit rollover except for $\gg i$.
- Government debt crisis (point Z) affects the banking sectors → banking crisis: e.g., *EL*, *PT* in EZ. But link bidirectional, i.e., banking crisis ⇒ *PD* crisis, e.g., *IR*, (doom loop banks-governments).

- **Banking crises**: investors' exit from sovereign bond market \implies :
 - a) $p \downarrow \&$ capital losses \rightarrow banks' balance sheet worsening, being they a major investor in government bonds;
 - b) $M \downarrow$ (liquidity shrinkage) \rightarrow troubles with deposit rollover except for $\gg i$.
- Government debt crisis (point Z) affects the banking sectors → banking crisis: e.g., *EL*, *PT* in EZ. But link bidirectional, i.e., banking crisis ⇒ *PD* crisis, e.g., *IR*, (*doom loop* banks-governments).
- Automatic stabilizers: In Z, countries ∈ IMU without automatic stabilizers (AST) against cyclical fluctuations. AST ⇒ recession ≫ d, expansion ≪ d, i.e., countercyclical fiscal policy. By contrast, no-AST ⇒: recession → ≪ T & ≫ d; markets' trust future sustainability PD ↓; liquidity crisis; government forced to austerity policies, i.e. pro-cyclical fiscal policy→ expansion & recession phases to intensify (boom-bust cycle; Eichengreen et al., 2005).

 No-AST in IMU very costly & destabilizing: can undermine MU political & social consensus.

- No-AST in IMU very costly & destabilizing: can undermine MU political & social consensus.
- Which solution? 3 (non-exclusive) possibilities:

- No-AST in IMU very costly & destabilizing: can undermine MU political & social consensus.
- Which solution? 3 (non-exclusive) possibilities:
- Raise insolvency cost. C₀ line (Fig. 17) shifts upward; threshold shock increases; attack zone shrinks, lowering insolvency fears on PD.

- No-AST in IMU very costly & destabilizing: can undermine MU political & social consensus.
- Which solution? 3 (non-exclusive) possibilities:
- Raise insolvency cost. C₀ line (Fig. 17) shifts upward; threshold shock increases; attack zone shrinks, lowering insolvency fears on PD.
- Appoint LLR role to CB. Allow CB (ECB) to (always) provide the required liquidity to sovereign bond market member countries, i.e., play the Lender of Last Resort (LLR) role.

- No-AST in IMU very costly & destabilizing: can undermine MU political & social consensus.
- Which solution? 3 (non-exclusive) possibilities:
- Raise insolvency cost. C₀ line (Fig. 17) shifts upward; threshold shock increases; attack zone shrinks, lowering insolvency fears on PD.
- Appoint LLR role to CB. Allow CB (ECB) to (always) provide the required liquidity to sovereign bond market member countries, i.e., play the Lender of Last Resort (LLR) role.
- Integrate national PDs into a common debt. This ⇒ FU and eradicates IMU fragility by completing the Union (MU+FU=FMU).

- No-AST in IMU very costly & destabilizing: can undermine MU political & social consensus.
- Which solution? 3 (non-exclusive) possibilities:
- Raise insolvency cost. C₀ line (Fig. 17) shifts upward; threshold shock increases; attack zone shrinks, lowering insolvency fears on PD.
- Appoint LLR role to CB. Allow CB (ECB) to (always) provide the required liquidity to sovereign bond market member countries, i.e., play the Lender of Last Resort (LLR) role.
- Integrate national PDs into a common debt. This ⇒ FU and eradicates IMU fragility by completing the Union (MU+FU=FMU).
 - Option (1) ⇒ high default costs & ⊂ possibility of excluding defaulting countries from MU. Option (2) needed to manage crisis in sovereign bond markets. Option (3) required for MU long-run sustainability.

 EMU ∈ IMU ⊂ multiple equilibria & self-fulfilling debt crises. EMU fragility removal → FMU (MU+FU) → political union (USE).

- EMU ∈ IMU ⊂ multiple equilibria & self-fulfilling *debt* crises. EMU fragility removal → FMU (MU+FU) → political union (USE).
- Actions → FMU centered on 2 fronts: i) central bank (ECB) → option (2); ii) governments → option (3).

- EMU ∈ IMU ⊂ multiple equilibria & self-fulfilling *debt* crises. EMU fragility removal → FMU (MU+FU) → political union (USE).
- Actions → FMU centered on 2 fronts: i) central bank (ECB) → option (2); ii) governments → option (3).
- **Central bank**. In stand-alone countries & FMUs debt issued in own currency and liquidity/debt crisis avoided tanks to CB insurance (LLR role).

- EMU ∈ IMU ⊂ multiple equilibria & self-fulfilling *debt* crises. EMU fragility removal → FMU (MU+FU) → political union (USE).
- Actions \rightarrow FMU centered on 2 fronts: *i*) central bank (ECB) \rightarrow option (2); *ii*) governments \rightarrow option (3).
- **Central bank**. In stand-alone countries & FMUs debt issued in own currency and liquidity/debt crisis avoided tanks to CB insurance (LLR role).
- LLR CB \Rightarrow : *i*) governments never in liquidity shortage; *ii*) banking sector shielded from *bank runs*; *iii*) removal *bad equilibrium* occurrence ($B_E \equiv B_U$).

- EMU ∈ IMU ⊂ multiple equilibria & self-fulfilling *debt* crises. EMU fragility removal → FMU (MU+FU) → political union (USE).
- Actions \rightarrow FMU centered on 2 fronts: *i*) central bank (ECB) \rightarrow option (2); *ii*) governments \rightarrow option (3).
- **Central bank**. In stand-alone countries & FMUs debt issued in own currency and liquidity/debt crisis avoided tanks to CB insurance (LLR role).
- LLR CB ⇒: i) governments never in liquidity shortage; ii) banking sector shielded from *bank runs*; iii) removal *bad equilibrium* occurrence (B_E ≡ B_U).
- Power LLR role clear from ECB intervention in 2012: OMT & QE policies.

 OMT (*Outright Monetary Transaction*) policy: short-term sovereign bond purchases countries ∈ EMU under severe macroeconomic troubles → EZ spreads ↓ and waned EMU breakup expectations ⇐ spreads explosion. Unfortunately, ECB conditioned OMT to austerity program by applicant countries, deepening the recession phase.

- OMT (*Outright Monetary Transaction*) policy: short-term sovereign bond purchases countries ∈ EMU under severe macroeconomic troubles → EZ spreads ↓ and waned EMU breakup expectations ⇐ spreads explosion. Unfortunately, ECB conditioned OMT to austerity program by applicant countries, deepening the recession phase.
- QE (*Quantitative Easing*): sovereign bond purchases assessed non-conventional, but really conventional: ∈ {CB tools}.

- OMT (*Outright Monetary Transaction*) policy: short-term sovereign bond purchases countries ∈ EMU under severe macroeconomic troubles → EZ spreads ↓ and waned EMU breakup expectations ⇐ spreads explosion. Unfortunately, ECB conditioned OMT to austerity program by applicant countries, deepening the recession phase.
- QE (*Quantitative Easing*): sovereign bond purchases assessed non-conventional, but really conventional: ∈ {CB tools}.
- Novelty is operation size: [03/2015 09/2016 (60 bln €/month); 10/2016 - 03/2017 (80 bln €/month); 04/2017 - 12/2017 (60 bln €/month); 01/2018 - 06-2018 (15 bln €/month); 11/2019 - 03/2020 (20 bln €/month); from 04/2020 (Pandemic Emergency Purchase Programme =750 bln €~ 60 bln €/month)].

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

• OMT & QE instruments \in open market operations (OMO).

47 ▶

- OMT & QE instruments \in open market operations (OMO).
- Additional ECB instruments of liquidity management are:

- OMT & QE instruments \in open market operations (OMO).
- Additional ECB instruments of liquidity management are:
- (i) Main refinancing operations (MRO) ∈ OMO, used before 2015: ECB provides liquidity to bank against collateral (i.e., tradable securities).

- OMT & QE instruments \in open market operations (OMO).
- Additional ECB instruments of liquidity management are:
- (i) Main refinancing operations (MRO) ∈ OMO, used before 2015: ECB provides liquidity to bank against collateral (i.e., tradable securities).
- (*ii*) Standing facilities (SF): credit lines to obtain overnight liquidity from the central bank against sufficient eligible assets.

- OMT & QE instruments \in open market operations (OMO).
- Additional ECB instruments of liquidity management are:
- (i) Main refinancing operations (MRO) ∈ OMO, used before 2015: ECB provides liquidity to bank against collateral (i.e., tradable securities).
- (*ii*) Standing facilities (SF): credit lines to obtain overnight liquidity from the central bank against sufficient eligible assets.
- (*iii*) *Minimum reserve requirements* (MRR) for credit institutions: required reserve holdings of each institution.

- OMT & QE instruments \in open market operations (OMO).
- Additional ECB instruments of liquidity management are:
- (i) Main refinancing operations (MRO) ∈ OMO, used before 2015: ECB provides liquidity to bank against collateral (i.e., tradable securities).
- (*ii*) Standing facilities (SF): credit lines to obtain overnight liquidity from the central bank against sufficient eligible assets.
- (*iii*) *Minimum reserve requirements* (MRR) for credit institutions: required reserve holdings of each institution.
- (*iv*) Official discount rate (OR): interest rate charged to commercial banks and other financial institutions for the loans from ECB.

• ECB LLR role debated and questioned:

- ECB LLR role debated and questioned:
- 2014, German Federal Constitutional Court sentenced OMT inconsistent with EU law (exceeds ECB power & breaks German constitution) → ECB before the European Union Court of Justice (EUCJ). 2015, EUCJ rejects the appeal and finds OMT compatible with EU law.

- ECB LLR role debated and questioned:
- 2014, German Federal Constitutional Court sentenced OMT inconsistent with EU law (exceeds ECB power & breaks German constitution) → ECB before the European Union Court of Justice (EUCJ). 2015, EUCJ rejects the appeal and finds OMT compatible with EU law.
- Disputes over ECB LLR role on 3 pillars (core German Court-EUCJ controversy): 1) inflation risk; 2) fiscal effects; 3) moral hazard (MH).

- ECB LLR role debated and questioned:
- 2014, German Federal Constitutional Court sentenced OMT inconsistent with EU law (exceeds ECB power & breaks German constitution) → ECB before the European Union Court of Justice (EUCJ). 2015, EUCJ rejects the appeal and finds OMT compatible with EU law.
- Disputes over ECB LLR role on 3 pillars (core German Court-EUCJ controversy): 1) inflation risk; 2) fiscal effects; 3) moral hazard (MH).
- Point (1) raised in 2010 when ECB started purchasing sovereign bonds EZ countries.

- ECB LLR role debated and questioned:
- 2014, German Federal Constitutional Court sentenced OMT inconsistent with EU law (exceeds ECB power & breaks German constitution) → ECB before the European Union Court of Justice (EUCJ). 2015, EUCJ rejects the appeal and finds OMT compatible with EU law.
- Disputes over ECB LLR role on 3 pillars (core German Court-EUCJ controversy): 1) inflation risk; 2) fiscal effects; 3) moral hazard (MH).
- Point (1) raised in 2010 when ECB started purchasing sovereign bonds EZ countries.
- Claim: $\gg M^s \to \gg \Delta p$. But the effect depends on monetary multiplier (m), i.e. on the link $MB \& M^s$, namely,

 $M^{s} = m \times MB.$

- ECB LLR role debated and questioned:
- 2014, German Federal Constitutional Court sentenced OMT inconsistent with EU law (exceeds ECB power & breaks German constitution) → ECB before the European Union Court of Justice (EUCJ). 2015, EUCJ rejects the appeal and finds OMT compatible with EU law.
- Disputes over ECB LLR role on 3 pillars (core German Court-EUCJ controversy): 1) inflation risk; 2) fiscal effects; 3) moral hazard (MH).
- Point (1) raised in 2010 when ECB started purchasing sovereign bonds EZ countries.
- Claim: ≫ M^s → ≫ Δp. But the effect depends on monetary multiplier (m), i.e. on the link MB & M^s, namely,

$$M^s = m \times MB.$$

This → to discern: a) MB from M^s; b) normal phase from adverse occurrence or crisis.

Giovanni Piersanti (Institute)

(a): when CB purchases government bonds MB (≡ CO + D) ↑. This ⇒ (always) ≫ M^s & ≫ Δp (Figs. 18 &19). In EZ blatant difference between pre-(2000-08) & post-crisis (2009-13): pre-crisis, MB & M3 ≡ M^s congruent (m = 100%) & inflation > 2%; post crisis relationship broken down (m ≃ 0) & inflation < 2% (01/2015 = -0.6%, 11/2016 = -0.1, ≪ target 2%).

- (a): when CB purchases government bonds MB (≡ CO + D) ↑. This ⇒ (always) ≫ M^s & ≫ Δp (Figs. 18 &19). In EZ blatant difference between pre-(2000-08) & post-crisis (2009-13): pre-crisis, MB & M3 ≡ M^s congruent (m = 100%) & inflation > 2%; post crisis relationship broken down (m ≃ 0) & inflation < 2% (01/2015 = -0.6%, 11/2016 = -0.1, ≪ target 2%).
- Drop $m \implies$ liquidity trap: banks \gg reserves $\longleftarrow \gg$ liquidity from ECB but do not provide \gg credit; \gg uncertainty (\Leftarrow crisis) $\rightarrow \gg$ risk aversion $\rightarrow m \le 0 \rightarrow$ deflation, not inflation.

- (a): when CB purchases government bonds MB (≡ CO + D) ↑. This ⇒ (always) ≫ M^s & ≫ Δp (Figs. 18 &19). In EZ blatant difference between pre-(2000-08) & post-crisis (2009-13): pre-crisis, MB & M3 ≡ M^s congruent (m = 100%) & inflation > 2%; post crisis relationship broken down (m ≃ 0) & inflation < 2% (01/2015 = -0.6%, 11/2016 = -0.1, ≪ target 2%).
- Drop $m \implies$ liquidity trap: banks \gg reserves $\longleftarrow \gg$ liquidity from ECB but do not provide \gg credit; \gg uncertainty (\Leftarrow crisis) $\rightarrow \gg$ risk aversion $\rightarrow m \le 0 \rightarrow$ deflation, not inflation.
- (b): during a crisis agents ≫ liquidity preference. If CB ¬ ≫ MB, crisis→ bank runs & deep recession; if CB ≫ MB, no bank runs & deflation avoided.

- (a): when CB purchases government bonds MB (≡ CO + D) ↑. This ⇒ (always) ≫ M^s & ≫ Δp (Figs. 18 &19). In EZ blatant difference between pre-(2000-08) & post-crisis (2009-13): pre-crisis, MB & M3 ≡ M^s congruent (m = 100%) & inflation > 2%; post crisis relationship broken down (m ≃ 0) & inflation < 2% (01/2015 = -0.6%, 11/2016 = -0.1, ≪ target 2%).
- Drop $m \implies$ liquidity trap: banks \gg reserves $\longleftarrow \gg$ liquidity from ECB but do not provide \gg credit; \gg uncertainty (\Leftarrow crisis) $\rightarrow \gg$ risk aversion $\rightarrow m \le 0 \rightarrow$ deflation, not inflation.
- (b): during a crisis agents ≫ liquidity preference. If CB ¬ ≫ MB, crisis→ bank runs & deep recession; if CB ≫ MB, no bank runs & deflation avoided.
- Conclusion: LLR & inflation not related. Milton Friedman (1963) made clear GFC29 sharpened by FED ¬ LLR action. If Δp ↑, CB can ≫ MRR or ≪ MB selling government bonds to banks (open-market operations) and → Δp ↓.

Giovanni Piersanti (Institute)

The Economics of Monetary Unions

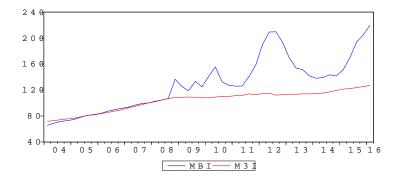
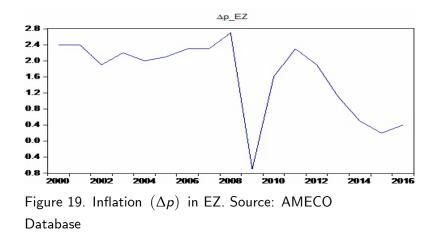



Figure 18 Monetary Base (MB) & money stock (M3) in EZ. (12/2007=100). Source: ECB

 Claim point (2): if country ∈ EMU in *default*, CB faces losses borne by EU taxpayers (≫ T). ∴ CB should not act so as to mix MP&FP (Goodfriend, 2011).

- Claim point (2): if country ∈ EMU in *default*, CB faces losses borne by EU taxpayers (≫ T). ∴ CB should not act so as to mix MP&FP (Goodfriend, 2011).
- The view overlooks:

- Claim point (2): if country ∈ EMU in *default*, CB faces losses borne by EU taxpayers (≫ T). ∴ CB should not act so as to mix MP&FP (Goodfriend, 2011).
- The view overlooks:
- (a) ∀ OMO (sovereign securities or not, ⊂ exchange rates) ⇒ losses risk for CB. Implication: CB should avoid ∀ OMO, i.e., stop being CB;

- Claim point (2): if country ∈ EMU in *default*, CB faces losses borne by EU taxpayers (≫ T). ∴ CB should not act so as to mix MP&FP (Goodfriend, 2011).
- The view overlooks:
- (a) ∀ OMO (sovereign securities or not, ⊂ exchange rates) ⇒ losses risk for CB. Implication: CB should avoid ∀ OMO, i.e., stop being CB;
- (b) presumed losses ← OMO needful and helpful if warrant financial stability (i.e., avoid banking & financial crisis);

- Claim point (2): if country ∈ EMU in *default*, CB faces losses borne by EU taxpayers (≫ T). ∴ CB should not act so as to mix MP&FP (Goodfriend, 2011).
- The view overlooks:
- (a) ∀ OMO (sovereign securities or not, ⊂ exchange rates) ⇒ losses risk for CB. Implication: CB should avoid ∀ OMO, i.e., stop being CB;
- (b) presumed losses ← OMO needful and helpful if warrant financial stability (i.e., avoid banking & financial crisis);
- (c) CB cannot default: it can create money and operate with negative equity: no need of positive equity to operate;

- Claim point (2): if country ∈ EMU in *default*, CB faces losses borne by EU taxpayers (≫ T). ∴ CB should not act so as to mix MP&FP (Goodfriend, 2011).
- The view overlooks:
- (a) ∀ OMO (sovereign securities or not, ⊂ exchange rates) ⇒ losses risk for CB. Implication: CB should avoid ∀ OMO, i.e., stop being CB;
- (b) presumed losses ← OMO needful and helpful if warrant financial stability (i.e., avoid banking & financial crisis);
- (c) CB cannot default: it can create money and operate with negative equity: no need of positive equity to operate;
- (d) IMU open to *self-fulfilling* dynamics driven by market sentiments
 → debt crises (*bad equilibrium*). CB LLR role can ward off *bad equilibrium*, avoiding losses and fiscal implications.

Changing EMU in FMU ECB role: moral hazard

• Point (3) is risk $\in \forall$ insurance mechanism \rightarrow too much government debt.

- Point (3) is risk $\in \forall$ insurance mechanism \rightarrow too much government debt.
- But MH risk \Rightarrow giving up LLR role (fatal error).

- Point (3) is risk ∈ ∀ insurance mechanism → too much government debt.
- But MH risk \Rightarrow giving up LLR role (fatal error).
- Solution in rules →≪ government power to ≫ PD. Optimal strategy: disjoining LLR (∈ CB) from MH management (∈ institution on debt supervision as in banking sector).

- Point (3) is risk ∈ ∀ insurance mechanism → too much government debt.
- But MH risk \Rightarrow giving up LLR role (fatal error).
- Solution in rules →≪ government power to ≫ PD. Optimal strategy: disjoining LLR (∈ CB) from MH management (∈ institution on debt supervision as in banking sector).
- In EMU PD supervision \in EC (\subseteq SGP \Rightarrow 3%, d/GDP; 60%, PD/GDP). But efficacy disappointing (broken several times: 2003-2004 (FR, DE), after 2009 by almost all). Reasons:

- Point (3) is risk ∈ ∀ insurance mechanism → too much government debt.
- But MH risk \Rightarrow giving up LLR role (fatal error).
- Solution in rules →≪ government power to ≫ PD. Optimal strategy: disjoining LLR (∈ CB) from MH management (∈ institution on debt supervision as in banking sector).
- In EMU PD supervision \in EC (\subseteq SGP \Rightarrow 3%, d/GDP; 60%, PD/GDP). But efficacy disappointing (broken several times: 2003-2004 (FR, DE), after 2009 by almost all). Reasons:
- (a) Member countries unwilling to submit national FP to external supervision and give up sovereignty on budget management.

- Point (3) is risk ∈ ∀ insurance mechanism → too much government debt.
- But MH risk \Rightarrow giving up LLR role (fatal error).
- Solution in rules →≪ government power to ≫ PD. Optimal strategy: disjoining LLR (∈ CB) from MH management (∈ institution on debt supervision as in banking sector).
- In EMU PD supervision \in EC (\subseteq SGP \Rightarrow 3%, d/GDP; 60%, PD/GDP). But efficacy disappointing (broken several times: 2003-2004 (FR, DE), after 2009 by almost all). Reasons:
- (a) Member countries unwilling to submit national FP to external supervision and give up sovereignty on budget management.
- (b) SGP rules too inflexible → tensions among national States & European institution. Inflexibility → sanctions & penalty even in recessions, raising costs & pains of crises and enhancing EU-scepticism.

Fiscal union

• Point (3) FU, i.e., consolidation (total/partial) budgets & public debts.

Changing EMU in FMU Fiscal union

- Point (3) FU, i.e., consolidation (total/partial) budgets & public debts.
- Reason is twofold:

- Point (3) FU, i.e., consolidation (total/partial) budgets & public debts.
- Reason is twofold:
- Establish a common fiscal authority with debt in the own currency, shielding member countries from i) default risk; and ii) destabilizing forces ← financial markets.

- Point (3) FU, i.e., consolidation (total/partial) budgets & public debts.
- Reason is twofold:
- Stablish a common fiscal authority with debt in the own currency, shielding member countries from *i*) default risk; and *ii*) destabilizing forces ← financial markets.
- Bring in an automatic stabilization mechanism ensuring Y transfers between countries ← asymmetric shocks.

- Point (3) FU, i.e., consolidation (total/partial) budgets & public debts.
- Reason is twofold:
- Stablish a common fiscal authority with debt in the own currency, shielding member countries from *i*) default risk; and *ii*) destabilizing forces ← financial markets.
- e Bring in an automatic stabilization mechanism ensuring Y transfers between countries ← asymmetric shocks.
 - Solution FU \implies surrender sovereignty (total/partial) to European institutions, i.e., political union.

- Point (3) FU, i.e., consolidation (total/partial) budgets & public debts.
- Reason is twofold:
- Stablish a common fiscal authority with debt in the own currency, shielding member countries from *i*) default risk; and *ii*) destabilizing forces ← financial markets.
- ❷ Bring in an automatic stabilization mechanism ensuring Y transfers between countries ← asymmetric shocks.
 - Solution FU ⇒ surrender sovereignty (total/partial) to European institutions, i.e., political union.
 - Today no (poor) willingness in EU \rightarrow FU and EMU remains IMU. This does not preclude a small step strategy, signaling the willingness EMU \rightarrow FMU.

Fiscal & political union

Strategy of small steps ⊂: i) issuing common bonds; ii) banking union.

Changing EMU in FMU Fiscal & political union

- Strategy of small steps ⊂: i) issuing common bonds; ii) banking union.
- $(i) \rightarrow$ Eurobonds which (a) makes member countries collectively responsible for the joint debt issued; (b) shield member countries from self-fulfiing debt crises. But: $(c) \rightarrow$ MH risk; (d) opposed by low debt countries.

- Strategy of small steps ⊂: i) issuing common bonds; ii) banking union.
- (i) → Eurobonds which (a) makes member countries collectively responsible for the joint debt issued; (b) shield member countries from self-fulfiing debt crises . But: (c) → MH risk; (d) opposed by low debt countries.
- (*ii*) break down the *doom loop* banks-government & set up a cost-sharing mechanism for banking crisis resolution. Strategy already started in 2014, but capital endowment scanty (€ 55 × 10⁹), inadequate to operate in crisis events.

- Strategy of small steps ⊂: i) issuing common bonds; ii) banking union.
- (i) → Eurobonds which (a) makes member countries collectively responsible for the joint debt issued; (b) shield member countries from self-fulfiing debt crises . But: (c) → MH risk; (d) opposed by low debt countries.
- (*ii*) break down the *doom loop* banks-government & set up a cost-sharing mechanism for banking crisis resolution. Strategy already started in 2014, but capital endowment scanty (€ 55 × 10⁹), inadequate to operate in crisis events.
- Long-run success EZ depends on the strength PU process. PU variable so far missing in EU, but needed to lower: (a) effects of asymmetric shock; (b) structural fragility IMU; (c) bring in firm links among member countries to counteract diverging forces in EZ, i.e., long-run viability EMU.