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Clustered regularly interspaced short palindromic repeats (CRISPR)–
CRISPR-associated protein (Cas)9-mediated genome modification enables

us to edit the genomes of a variety of organisms rapidly and efficiently.

The advantages of the CRISPR/Cas9 system have made it an increasingly

popular genetic engineering tool for biological and therapeutic applica-

tions. Moreover, CRISPR/Cas9 has been employed to recruit functional

domains that repress/activate gene expression or label specific genomic loci

in living cells or organisms, in order to explore developmental mechanisms,

gene expression regulation, and animal behavior. One major concern about

this system is its specificity; although CRISPR/Cas9-mediated off-target

mutation has been broadly studied, more efforts are required to further

improve the specificity of CRISPR/Cas9. We will also discuss the potential

applications of CRISPR/Cas9.

Introduction

Precise modification of specific sites within a gene of

interest is considered to be a standard approach to elu-

cidate gene function, to create disease animal models,

and to improve desired characteristics of animals and

plants. Targeted gene modification also provides the

potential for therapeutic applications. In the past dec-

ades, strategies for precise genome modifications using

embryonic stem cell-mediated modification by homolo-

gous recombination were limited to certain organisms.

Recently, engineered nucleases, including zinc finger

nucleases, transcription activator-like effector nucleases,

and clustered regularly interspaced short palindromic

repeats (CRISPR)–CRISPR-associated protein (Cas)

have provided a much simpler and more economic

method for gene-targeted modification [1]. These engi-

neered nucleases generate a DNA double-strand break

(DSB) at the targeted genome locus. The break activates

repair through error-prone nonhomologous end joining
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(NHEJ) or homology-directed repair (HDR). In the

absence of a template, NHEJ is activated, resulting in

insertions and/or deletions (indels) that disrupt the tar-

get loci. In the presence of a donor template with

homology to the targeted locus, the HDR pathway

operates, allowing for precise mutations to be made.

The CRISPR/Cas system was first described as an

adaptive immune system in bacteria and archaeons,

and has now been engineered as RNA-guided endonuc-

leases (RGENs) for genome editing. Typically, a type

II CRISPR system functions by the CRISPR RNA

(crRNA) interacting with a trans-activating crRNA

(tracrRNA) to form a crRNA�tracrRNA duplex [this

RNA duplex could be replaced with a single guide

RNA (sgRNA)], which directs Streptococcus pyogenes

Cas9 (SpyCas9) to specific sites, thereby generating a

DNA strand break [2]. Unlike zinc finger nucleases and

transcription activator-like effector nucleases, the

CRISPR/Cas9 system does not require the engineering

of specific protein pairs for each target site, and intro-

duces Cas9 to the target sequence based on RNA�DNA

base-pairing rules. The simplicity of the CRISPR/Cas9

system has revolutionized genome engineering in a

variety of cells and organisms.

In this review, we describe how the CRISPR/Cas9

system can be engineered for genome editing in

different kinds of organisms. We will also discuss

applications of CRISPR/Cas9 beyond genome editing,

the improvement of the specificity of this system, and

the challenges still remaining. Finally, we will highlight

the bright future of this fascinating system in basic

research and therapeutic applications.

Engineering CRISPR/Cas9 for genome
editing

RNA-guided DNA cleavage systems protect bacteria

and archaeons against invading DNA contaminants,

serving as an adaptive immune system. The process is

quite complicated. The invading foreign DNA can be

recognized and inserted into a genome locus to form a

CRISPR region; the captured foreign DNA sequences

are termed protospacers. In type II CRISPR systems,

the CRISPR locus is transcribed into a pre-CRISPR

RNA, and processed to a matured crRNA with the

assistance of tracrRNA. Interaction between crRNA

and tracrRNA directs SpyCas9 to recognize the spe-

cific DNA sequence complementary with the protosp-

acer. This RGEN target site is usually 20 bp in length

and must be immediately adjacent to the NGG motif,

or sometimes NAG (with much lower cleavage effi-

ciency) [3], which are known as protospacer adjacent

motifs (PAMs). The programmable crRNA and fixed

tracrRNA are fused to form an sgRNA, which directs

Cas9 to the desired site and catalyzes the cleavage of

both DNA strands effectively.

Cas9 contains the RuvC and HNH nuclease

domains (Fig. 1). The HNH domain is a single

domain, whereas the RuvC domain consists of three

subdomains. Single-particle electron microscopy recon-

structions of SpyCas9 showed an sgRNA-guided struc-

tural change forming a central channel for the

RNA�DNA heteroduplex [2]. Later, the high-resolu-

tion structure of SpyCas9 in complex with guide RNA

and target DNA showed a bilobed architecture includ-

ing a target recognition lobe and a nuclease lobe [4].

The nuclease lobe is composed of an HNH nuclease

domain, a RuvC nuclease domain, and a C-terminal

region. The HNH and RuvC nuclease domains are

A
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Fig. 1. CRISPR/Cas9-mediated genome editing. (A) Cas9�sgRNA-
induced DSBs can be repaired by either NHEJ or by HDR

pathways. Cas9 contains RuvC and HNH nuclease domains, each

of which is responsible for cleavage of one DNA strand. (B)

Paired nickases were used to improve the specificity in the

genome editing. Cas9 nickase (HNH) cleaves only the DNA strand

(complementary strands of the target DNA) recognized by the

sgRNA. Cas9 nickase (RuvC) cleaves the DNA strand

(noncomplementary strands of the target DNA) not interacting

with the sgRNA. (C) dCas9 (both HNH and RuvC nuclease

domains are inactivated by mutation) is fused with Fok I nuclease

to improve the specificity of genome editing. (D) dCas9 fused

with an effector domain, such as DNA methylases,

demethylases, histone acetylases, deaceylases, and kinases, to

provide the specific chromatin modifications for desired effects.
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responsible for the cleavage of the complementary and

noncomplementary DNA strands of the target sites

(Fig. 1A) [5].

In general, Cas9 and sgRNA are the essential com-

ponents for genome editing of the CRISPR/Cas9 sys-

tem: sgRNA is responsible for the site targeting, and

Cas9 contributes to the DNA cleavage at the target

site. The PAM is required for target site recognition

[2]. Thus, any DNA sequence that contains the N20-

NGG motif could be recognized as a target site. This

system can be widely used in bacteria and many other

kinds of organisms. Also, codon-optimized Cas9 with

an appropriate nuclear localization signal showed high

activity in eukaryotes such as human cells, mice, and

rats [6–8]. Since its first description 2 years ago, the

sgRNA-guided Cas9 system has been applied to mod-

ify endogenous genes in a wide range of cells and

organisms, including bacteria [9], yeast [10], plants

[11–13], roundworms [14], silkworms [15], fruit flies

[16], zebrafish [17], frogs [18], rabbits [19], mice [7,20],

rats [8,21], pigs [22], monkeys [23], and different

human cells [6,24–26].
By providing multiple sgRNAs and programming

the DNA-cleaving activity of Cas9, it has proved pos-

sible to simultaneously modify multiple genes in cells

or animals. Four genes, i.e. ApoE, B2m, Prf1, and

Prkdc, have been disrupted simultaneously in rats at

an efficiency of 24% [27], five genes, i.e. B2m, Il2rg,

Prf1, Prkdc, and Rag1, have been targeted in mice at

an efficiency of 75% [28], five genes, i.e. Tet1, Tet2,

Tet3, Sry, and Uty, have been targeted in mouse

embryonic stem cells at an efficiency of 10% [20], and

five genes, i.e. Ddx, Egfp, Gol, Mitfa, and Tyr, have

been targeted in somatic cells of zebrafish, also at high

efficiency [29]. The capacity to simultaneously disrupt

multiple genes is especially useful for studying adjacent

genes. Moreover, by exploiting the advantages of Cas9

used with multiple sgRNAs, large-fragment deletion or

inversion between sgRNA targeting sites has been suc-

cessfully achieved [30]. When supplied with plasmid

DNA or single-strand oligonucleotide as templates,

Cas9-assisted HDR operated and successfully gener-

ated site-specific mutation and loxP or reporter gene

insertion in mice [31], and loxP or reporter gene inser-

tion in rats [32,33] and zebrafish [34].

The simplicity of the CRISPR/Cas9 system has also

facilitated the generation of lentivirus-based sgRNA

libraries covering almost all mouse and human genes,

which can be used for high-throughput functional

screening [35,36]. Genome-wide loss-of-function screens

have already been applied to robust negative and posi-

tive selection screens in human cells [35,37]. The

sgRNA can be designed to target nearly any DNA

sequence. Therefore, sgRNA libraries may also be used

to study the function of noncoding genetic elements.

Fusion of a nonfunctional or ‘dead’ Cas9 (dCas9; see

below) with different effector domains has been used

for studies beyond loss-of-function phenotypes [38,39].

For example, dCas9 fused to an epigenetic modifier was

applied to elucidate the methylation effect and certain

chromatin states in defined conditions.

In addition, the CRISPR/Cas9 system has been used

to correct the genetic disease in mice and in intestinal

stem cell organoids of cystic fibrosis patients [40,41].

Other evidence showed that CRISPR/Cas9 corrected

the Fah mutation in an adult mouse model of human

hereditary tyrosinemia disease, and alleviated the

symptoms of this disease [42].

The simplicity and high DNA cleavage efficiency

have made CRISPR/Cas9 an increasingly popular gen-

ome-editing tool. Nevertheless, potential users should

pay attention to several points.

The first is the delivery of sgRNA and Cas9. Both

sgRNA and Cas9 are required for efficient target site

recognition and subsequent cleavage, and delivering

both of them simultaneously is more difficult than

delivering either one alone. Different approaches, such

as electroporation, nucleofection, and lipofectamine,

have been used for the delivery of Cas9 and sgRNA

expression plasmids into mammal cells. Lentiviral vec-

tors have been used to construct large-scale sgRNA

expressing libraries covering nearly all human and

mouse genes [35,36]. Meanwhile, in vitro-transcribed

Cas9 mRNA/plasmid DNA and sgRNA/plasmid

DNA have been microinjected into the one-cell

embryos of zebrafish [17], fruit flies [16], mice [7, 20],

rats [8,21,32], pigs [22] and monkeys [23] to generate

gene-modified animals. The purified Cas9 protein com-

plex together with sgRNAs has also been microinject-

ed into one-cell embryos to generate knockout mice

and zebrafish [43]. Time course experiments showed

that the Cas9 protein�sgRNA complex works earlier

than Cas9 mRNA plus sgRNA [43]. Polyethylene gly-

col) and Agrobacterium have been used for Cas9 and

sgRNA delivery into wheat, rice, sorghum, tobacco

and thale cress for genomic editing of these plants [11–
13,44]. The selection of a proper delivery system

depends on the cells or organisms used.

The second point concerns target site selection and

sgRNA design. In theory, any DNA sequence that

contains the sequence NGG (or NAG, a some lesser

extent) is a potential target site. The RNA polymerase

III-dependent U6 promoter and T7 promoter are most

commonly used for sgRNA expression. These promot-

ers require a G or GG at the 50-end of the RNA to be

transcribed. Therefore, a G or GG at the 50-end of the
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target site is required to start the transcription. A

recent study reported a new vector using the U6 pro-

moter to drive sgRNA expression without these limita-

tions. In the vector, the U6 promoter drives the

expression of multiple sgRNAs, each flanked by two

Csy4 RNase cleavage sites from Pseudomonas aerugin-

osa [45]. The expressed tandem multiple sgRNAs will

be separated when Csy4 RNase is present [45]. This

strategy allows any sequence containing NGG at the

30-end to be used as the potential targeting site [45]. In

addition, a group reported that truncated sgRNAs

with 17 or 18 nucleotides complementary with the

target site also induce DNA cleavage efficiently.

Therefore, sites in the form of GN16–19NGG or

GGN15–18NGG can serve as the potential targeting

sites. Such potential targeting sites will theoretically be

found within the whole genome every 1 in 32 bp or 1

in 128 bp, respectively.

The third point concerns the genotyping of

CRISPR/Cas9-induced modifications. One pair of

primers flanking the target site were designed to detect

the modification in the target site with the T7 endonu-

clease I assay [7,32]. Also, the same PCR products can

be used for restriction fragment length polymorphism

assay to detect the mutation [20,31]. Detailed modifica-

tions were detected by sequencing analysis.

Finally, off-target effects must be considered, as

Cas9 induces both mutations in its target and off-tar-

get mutations. As the off-target events may cause

unwanted modifications, it is very important to evalu-

ate these in gene-modified cells. However, for animals,

the side effects can be diluted by crossing with wild-

type animals.

Improving the specificity

The CRISPR/Cas9-mediated off-target effects could be

useful for bacteria and archaeons to recognize and

destroy invading hypervariable viral DNA or plasmid

DNA. However, for biological research or gene ther-

apy, the off-target events will generate unwanted

mutations beyond the target site and result in side

effects. Thus, increasing attention has been given to

improving the specificity of CRISPR/Cas9 systems.

A number of studies on potential off-target effects

have shown that mismatches at the 50-end of the target

site, but not the ‘seed’ (8–12 bp upstream of the PAM)

region, are generally better tolerated [2,25]. However,

mismatches of fewer than three nucleotides and out-

side the 50-end also induce off-target events in human

cells and rats [27,32,46]. Sometimes, the off-target

mutation occurs at a rate almost as high as that of the

on-target cleavage [46]. Indeed, by analyzing the off-

target events described in previously published papers,

we found that mismatches of up to five nucleotides

cause off-target mutations [46].

Deep sequencing assays were used to detect the off-

target effects in vivo [45,47–49]. Interestingly, most

reported potential off-target sites were located at the

noncoding regions in the host genomes [49]. A whole

exome sequencing assay showed no off-target events in

CRISPR/Cas9-modified human cells [49]. Several

CRISPR/Cas9 engineering online design and off-tar-

geting search tools have been developed, such as WTSI

Genome Editing (http://www.sanger.ac.uk/htgt/wge/),

E-CRISP (http://www.e-crisp.org/E-CRISP), Genome

engineering resources (www.genome-engineering.org/

crispr/), RGEN tools (http://www.rgenome.net/),

ZiFiT TARGETER software (http://zifit.partners.org/

ZiFiT/), GT-SCAN (http://gt-scan.braembl.org.au/gt-scan/),

and CHOPCHOP (https://chopchop.rc.fas.harvard.edu)

[1,50–52]. However, a more comprehensive evaluation

of the off-target effects mediated by CRISPR/Cas9 is

still expected. For example, how many mismatches are

tolerated for a given target site, and why do some of

the potential off-target sites cause mutations whereas

others do not? These differences may be caused by

genomic/epigenomic context and/or chromatin struc-

ture. We believe that a better understanding of the

sgRNA target site screen is required for further

improvement of the specificity of the CRISPR/Cas9

system.

Great efforts have already been made to explore dif-

ferent strategies to reduce off-target effects, as follows.

• Select good target sites. Some guidelines for target site

selection and sgRNA design are helpful for reducing

the off-target effects. For example, it has been

reported that high GC contents (up to 70%) in the tar-

get site could improve hybridization and allow more

mismatches to be tolerated [53], whereas a high rate of

off-target sites was observed with low a GC content

(< 30%) [46,54]. Mismatches that form DNA bulges

at the 50-end, the 30-end or 7–10 bp away from the

PAM [53] should be avoided, as should potential

sgRNA with bulges beyond the seed region [53].

• Reduce the concentrations of Cas9 and sgRNA. This

strategy decreases the off-target effects, but may also

affect on-target cleavages [55].

• Use Cas9 mRNA/protein and sgRNA instead of

Cas9 and an sgRNA expression plasmid. Cas9

mRNA/protein and sgRNA work for a shorter time,

whereas plasmids keep expressing Cas9 and sgRNA,

which may increase the off-target effects and cause
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possible random integration of Cas9 and sgRNA

into the genome [1].

• Truncate sgRNA at the 30-end of tracrRNA and add

two extra GG to the 50-end beyond the complemen-

tary region. Those two strategies decreased the ratio

of off-target to on-target effects [54,56].

• Use paired sgRNAs and Cas9 nickases. A Cas9 vari-

ant with a D10A or an H840A mutation in Cas9

nucleases induces DSBs between the paired sites by

two sgRNAs (Fig. 1B) [57]. Target sites on opposite

DNA strands separated by 4–100 bp would be recog-

nized and cleaved by paired Cas9 nickases [50,57].

Although several studies have shown that Cas9 nick-

ases with a single sgRNA induce indel mutations at

a very low level, the paired sgRNAs and Cas9 nick-

ase do reduce the off-target effects in human cells

and mice dramatically [58].

• Truncate sgRNAs at the 50-ends of prospacer

regions. The truncated sgRNAs have 17 bp or 18 bp

of complementary sequence, which functions as

effectively as full-length sgRNA with improved speci-

ficity [47].

• Use the dimeric CRISPR guide Fok I nuclease.

Fusion of dCas9 to Fok I nuclease generated fCas9

(Fig. 1C) [45,48]. DNA cleavage induced by fCas9

requires two sgRNAs targeted on opposite site of the

DNA strands separated by 15–25 bp in the ‘PAM-

out’ orientation. This modified fCas9 system showed

comparable DNA modification efficiency to the Cas9

nickases, which is approximately two-thirds of the

efficiency of the wild-type Cas9, but dramatically

increased the specificity [45,48]. The studies on Spy-

Cas9 structure also provide useful information for

reconstruction of Cas9 and sgRNA to improve the

specificity [4,5].

Expanding the applications

As a versatile genetic engineering tool, CRISPR/Cas9

has been exploited beyond genome editing. The Cas9

variant containing D10A and H840A mutations is cat-

alytically inactive Cas9 or dCas9 (Fig. 1D). This

dCas9 can be directed to the target site by sgRNA as

effectively as the wild-type, but it cannot function as a

nuclease for genome editing. This mutated CRISPR–
dCas9 has been applied for promoter targeting to

repress gene expression in Escherichia coli and human

cells, and also to recruit heterogeneous functional

domains to a specific locus to repress/activate gene

expression or label specific genomic loci in living cells

or organisms (Fig. 1D). For example, dCas9 has been

fused to transcriptional activation domains such as

VP64 or the p65 subunit to increase gene expression in

human cells, and has also been fused to the Kr€uppel-

associated box domain to decrease gene expression

[38,39,59–61]. Such gene regulation can also be ampli-

fied in a synergistic way by using multiple sgRNAs. In

a recent study, the fusion protein of transcription acti-

vator-like effector domains and LSD1 histone demeth-

ylase was used to regulate enhancer-associated

chromatin modifications [62]. Although no attempt has

yet been successful, it will be very interesting to test

whether dCas9 could be used for target epigenome

editing by fusing it with chromatin modification

domains, such as DNA methylases, demethylases, his-

tone acetylases, deacetylases, and kinases.

An enhanced GFP-tagged dCas9 has been used for

imaging of the repetitive elements of telomeres and

coding genes in living cells [63]. The labeling of specific

genomic loci in living cells or organisms is a powerful

strategy for the study of the spatiotemporal organiza-

tion and dynamics of chromatin in regulating genome

function [58]. The capability to regulate any endoge-

nous gene will help us to pinpoint the factors responsi-

ble for cell differentiation and other cellular processes.

Conclusions and prospects

In summary, the simplicity and high efficiency of the

CRISPR/Cas9 system allows affordable genome edit-

ing. In addition, the large sgRNA library will make

both drug target identification and function screening

more efficient. This RNA-guided genome-editing tool

also gives rise to the potential to change the genetic

landscape of animals and plants around us to obtain

the desired genotypes at will.

The application of this system has been expanded

beyond genome editing, to areas such as gene expres-

sion regulation and specific chromatin labeling with

fluorescent protein. Although great advances have

been made in improving the specificity and expanding

the application of this technology, there is still plenty

of room for improvement and extension.

The specificity of this system still needs improve-

ment. A major concern with the application of this

system is off-target mutagenesis. In the past 2 years,

many papers have reported off-target events of this

system. Many entities, such as paired nickases, trun-

cated sgRNAs, and dimeric FokI–dCas9 nucleases,

have been exploited to reduce off-target effects.

Although these modifications have reduced off-target

events significantly, further improvement is needed,

especially for the more precise modifications or

therapeutic applications. Further optimization of this

system needs unbiased strategies for more compre-

hensive evaluation of off-target effects. Meanwhile,
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the mechanisms underlying the target search remain

unclear. Learning more about the mechanisms of the

target search and cleavage will provide the basis for

improvement of Cas9 and/or sgRNA to increase the

specificity.

Another area for improvement is to shift the balance

of HDR/NHEJ from NHEJ-mediated indels towards

HDR-mediated modifications. Although the site muta-

tion or knockin events can be achieved at high rates in

cells and animals by providing a single-stranded DNA

or a double-stranded DNA plasmid as template, how

to reduce the NHEJ-mediated indels and improve the

HDR-mediated precise modification are still interesting

issues. Colocalization of the template DNA with the

Cas9�sgRNA complex to the target site to enhance

HDR or use of the small interfering RNA or inhibitor

of the NHEJ-mediated repair pathway to reduce the

competing NHEJ should be very helpful.

Another, but not the last, important problem is to

efficiently deliver CRISPR/Cas9 into those cell types

or tissues that are hard to transfect and/or infect. The

development of safe gene delivery vehicles is necessary

for the versatile use of the CRISPR/Cas9 system.

Undoubtedly, the basic research will make its way

into clinic practise. Further optimization and develop-

ment of next-generation CRISPR/Cas9 tools for gen-

ome and epigenome editing is expected to satisfy the

requirements for therapeutic applications.
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