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Changes in the intracellular concentration of calcium ([Ca2þ]i) represent a vital signaling
mechanism enabling communication among cells and between cells and the environment.
The initiation of embryo development depends on a [Ca2þ]i increase(s) in the egg, which is
generally induced during fertilization. The [Ca2þ]i increase signals egg activation, which is
the first stage in embryo development, and that consist of biochemical and structural
changes that transform eggs into zygotes. The spatiotemporal patterns of [Ca2þ]i at fertiliza-
tion show variability, most likely reflecting adaptations to fertilizing conditions and to the
duration of embryonic cell cycles. In mammals, the focus of this review, the fertilization
[Ca2þ]i signal displays unique properties in that it is initiated after gamete fusion by
release of a sperm-derived factor and by periodic and extended [Ca2þ]i responses. Here,
we will discuss the events of egg activation regulated by increases in [Ca2þ]i, the possible
downstream targets that effect these egg activation events, and the property and identity of
molecules both in sperm and eggs that underpin the initiation and persistence of the
[Ca2þ]i responses in these species.

An increase in the intracellular concentration
of calcium ([Ca2þ]i) underlies the initia-

tion, progression and/or completion of a wide
variety of cellular processes, including fertiliza-
tion, muscle contraction, secretion, cell divi-
sion, and apoptosis (Berridge et al. 2000). To
survive and proliferate, cells and organisms
must communicate, and changes in [Ca2þ]i

allow them to quickly respond to environmen-
tal, nutritional, or ligand challenges with resp-
onses that regulate cell fate and function. Cells
devote significant amounts of their energy re-
serves to create and maintain ionic gradients

between extracellular and intracellular milieus
and also within the latter, thereby allowing brief
alterations in these gradients to have profound
signaling effects. In the case of Ca2þ, myriad pro-
teins have acquired the ability to bind Ca2þ,
which allows them to interpret and transform
these elevations into cellular functions. This
review will examine the cellular modifications
induced by [Ca2þ]i changes during fertilization
in mature mammalian oocytes, henceforth re-
ferred to as eggs.

Oocytes during maturation ready them-
selves for fertilization and the initiation of
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embryogenesis. During this transition, oocytes
undergo changes that include the resumption
and progression of meiosis, the development
of polyspermy-preventing mechanisms, the
reorganization of the cytoskeleton with spindle
formation and displacement to the cortex, and
the translation, accumulation, and degradation
of specific mRNAs and proteins involved in
development (Horner and Wolfner 2008b). In
most species, and in all mammals, a [Ca2þ]i

signal is responsible for breaking the meiosis-
imposed developmental pause, causing egg
activation, which is the first stage of embryo
development (Whitaker 2006; Horner and
Wolfner 2008b). The egg activating [Ca2þ]i sig-
nal is generally associated with sperm-egg fu-
sion, which occurs at different stages of meiosis
depending on the species (Stricker 1999), al-
though in insects, where fertilization is disso-
ciated from activation and where embryos can
develop parthenogenetically, the presumed
[Ca2þ]i increase is thought to be induced by
mechanical stimulation during ovulation/ovi-
ductal transport (Page and Orr-Weaver 1997;
Horner and Wolfner 2008a).

The [Ca2þ]i responses that underlie egg
activation offer a great deal of diversity regard-
ing their spatiotemporal configuration, reflect-
ing both the plasticity of the Ca2þ signaling
machinery as well as the dissimilar Ca2þ re-
quirements for egg activation among species.
Generally speaking, species can be categorized
either as displaying a single [Ca2þ]i increase,
which is the case of sea urchins, starfish, frogs,
and fish, or showing multiple [Ca2þ]i changes,
also known as oscillations, which is the case
of nemertian worms, ascidians, and mammals
(Stricker 1999; Miyazaki and Ito 2006). Elucida-
tion of the signaling cascades and identification
of the molecules/receptor(s) that initiate the
Ca2þ signal at fertilization has proven elusive,
and this review will not dwell on that literature;
readers are referred to excellent recent reviews
on the subject (Whitaker 2006; Parrington
et al. 2007). Nonetheless, research has found
that Src-family kinases (SFKs) and phospholi-
pase Cg (PLCg) are involved in the activation
of the phosphoinositide pathway and produc-
tion of inositol 1,4,5-trisphosphate (IP3) during

fertilization in sea urchins, starfish, and frogs,
which reflects the contribution of a plasma
membrane receptor/signaling complex (Giusti
et al. 1999; Sato et al. 2000). Remarkably, a
receptor responsible for recruiting and activat-
ing SFKs during fertilization remains undiscov-
ered (Mahbub Hasan et al. 2005). Similarly, it
has proved difficult to uncover how the sperm
initiates oscillations. Research now suggests
that this may be accomplished by a novel mech-
anism whereby the signaling molecule/cargo,
known as the sperm factor (SF), is released
by the sperm into the ooplasm after fusion of
the gametes. Importantly, the SF is not IP3 or
Ca2þ but rather it contains a protein moiety
(Swann 1990; Wu et al. 1997; Kyozuka et al.
1998; Harada et al. 2007). To date, only the
mammalian SF’s molecular identity has been
resolved, and found to be another member of
the PLC family, a novel sperm-specific isoform
named PLCz (Saunders et al. 2002). This review
will examine the literature on mammalian
PLCzs and will focus as well on the egg mole-
cules that are required to initiate and sustain
[Ca2þ]i oscillations in these species.

EGG ACTIVATION

Following the resumption of meiosis during
maturation, vertebrate eggs arrest at the meta-
phase stage of the second meiosis (MII). Sperm
entry induces the resumption and completion
of meiosis, release of cortical granules (CG),
progression into interphase and pronuclear
(PN) formation (Fig. 1A); these phenomena,
which make possible the transition from egg
to embryo, are collectively known as “egg activa-
tion” (Schultz and Kopf 1995; Stricker 1999;
Ducibella et al. 2002). As stated earlier, an in-
crease in [Ca2þ]i is the universal trigger of egg
activation in all species studied to date (Stricker
1999), and in mammals this signal adopts a pat-
tern of brief but periodical increases in [Ca2þ]i

that last for several hours after sperm entry
(Miyazaki et al. 1986). The spatiotemporal
pattern of these [Ca2þ]i responses is decoded
by downstream effectors, underpinning the
distinct cellular events. We briefly review the
events of egg activation that are controlled by

Wakai et al.

2 Cite this article as Cold Spring Harb Perspect Biol 2011;3:a006767



[Ca2þ]i increases and the underlying molecular
effectors.

Events of Egg Activation Require [Ca2þ]i

Increases

Release from the MII arrest is an early and nec-
essary event of egg activation, as it allows com-
pletion of meiosis, establishment of euploidy

and progression into interphase with DNA
synthesis. The MII block is imposed at the
conclusion of maturation prior to ovulation
by the action of the cytostatic factor (CSF)
(Masui and Markert 1971). The CSF constrains
the activity of the anaphase promoting factor
(APC), an E3 ubiquitin ligase (Tunquist and
Maller 2003), which is responsible for the
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Figure 1. Temporal course of activation events in mouse eggs with a characteristic [Ca2þ]i response and candi-
date molecules involved in [Ca2þ]i oscillations and Ca2þ homeostasis. (A) Main cellular events of egg activation
and approximate time in hours (hr) required for their completion after sperm entry. (B) A typical pattern of
[Ca2þ]i oscillations associated with fertilization or with injection of PLCz cRNA. Note that recordings were ter-
minated prematurely. (C) On fusion, the sperm delivers phospholipase C (PLC)z, which hydrolyzes phospha-
tidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphospahte (IP3) and dyacyl glycerol (DAG). IP3

binds its receptor, IP3R1, causing Ca2þ release out of the endoplasmic reticulum (ER). Following Ca2þ release,
basal [Ca2þ]i levels are regulated by the combined action of the sarcoendoplasmic reticulum Ca2þATPase
(SERCA), plasma membrane Ca2þ pump (PMCA), Na/Ca2þ exchanger and mitochondria. Store operated
Ca2þ channels (SOC) are proposed to mediate Ca2þ influx required to fill the ER and maintain oscillations. Bro-
ken lines suggest feedback action of Ca2þ on IP3R1.
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ubiquitination and degradation of cyclin B
(CycB). CycB and the cyclin-dependent kinase
1 (Cdk1, also known as cdc2) are the molecular
components of the maturation promoting fac-
tor (MPF) (Swenson et al. 1986; Draetta et al.
1989), and inhibition of CycB degradation by
the CSF stabilizes MPF, which results in MII
arrest, as MPF activity correlates with meta-
phase (Masui and Markert 1971). Research
has shown that endogenous meiotic inhibitor
2 (Emi2) is an inhibitory component of APC
that underlies the MII arrest (Schmidt et al.
2005; Tung et al. 2005; Shoji et al. 2006). In
MII oocytes, inhibition of APC also ensures
that persistent levels of the separase inhibitor
securin prevents sister chromatid separation
(Madgwick et al. 2004; Nabti et al. 2008).

The association between intracellular ionic
increases and release from meiotic arrest was
first proposed at the end of the nineteenth cen-
tury by Loeb and colleagues who observed that
initiation of development in sea urchin eggs was
possible simply by varying the concentration
and composition of the fertilizing medium
(Loeb 1907). Subsequently, it was learned that
[Ca2þ]i levels dramatically change after fertil-
ization (Mazia 1935), which focused attention
on the role of this ion. Steinhardt and colleagues
showed the dominant role of Ca2þ, as they were
able to promote parthenogenetic development
in a variety of species by exposing eggs to
Ca2þ ionophores (Steinhardt et al. 1974).

How [Ca2þ]i increases induce release from
the MII arrest remained unknown for decades.
Research showed that [Ca2þ]i increases per se
were unable to induce CycB degradation and
that instead it required binding to a calmodu-
lin-sensitive enzyme (Lorca et al. 1993), which
was later shown to be Ca2þ-calmodulin-
dependent protein kinase II (CaMKII). None-
theless, how CaMKII relieved the CSF-imposed
MII arrest remained unknown. Adding to the
confusion was the finding that despite the
need for a [Ca2þ]i increase, Xenopus egg extracts
depleted of Polo-like kinase 1 (Plx1), a kinase
known until then more for its role on spindle
organization, were unable to overcome the
MII arrest (Descombes and Nigg 1998). This
quandary was solved when it was discovered

that Emi2 is a key component of CSF and that
Emi2 phosphorylation by Plx1, which causes
its degradation, is required for CycB proteaso-
mal degradation (Schmidt et al. 2005). Subse-
quent studies found that binding of Plx1 to
Emi2 requires a preceding phosphorylation by
CaMKII, thereby molecularly linking the need
for [Ca2þ]i and Plx1 to exit MII.

Although the aforementioned pathway was
elucidated in Xenopus eggs and extracts, mouse
eggs rely on similar mechanisms to enter and
exit the MII arrest. Most prominently, it is well
documented that CycB undergoes degradation
during fertilization (Nixon et al. 2002) and
that each of the sperm-induced [Ca2þ]i in-
creases is accompanied by a parallel increase in
CaMKII activity (Markoulaki et al. 2003). The
role of CaMKII on mammalian egg activation
was convincingly shown by studies in the
mouse, in which expression of constitutive
active forms of CaMKII into eggs initiated all
events of egg activation, except CG exocytosis,
and promoted development to the blastocyst
stage (Madgwick et al. 2005; Knott et al.
2006). Conversely, depletion of the CaMKIIg
isoform abrogated the ability of these eggs to
exit MII in response to [Ca2þ]i stimulation
(Backs et al. 2010; Chang et al. 2009), causing
infertility. Research also implicated Emi2 in
MII arrest in the mouse, as inhibition of Emi2
synthesis prevents cyclin B1 accumulation dur-
ing maturation (Madgwick et al. 2006), which
causes spontaneous activation (Shoji et al.
2006). The role of Plk1 in mouse MII arrest
remains unexplored, although our preliminary
data show that treatment of eggs with BI2536,
a new and selective Plk1 inhibitor, prevents
CycB degradation and MII exit in eggs treated
with SrCl2 (data not shown). In Xenopus, Plx1
phosphorylates xEmi2 within a phosphodegron
motif, after which xEmi2 is rapidly targeted for
degradation, but this motif, or its canonical re-
placements, is absent in the mouse homolog
(Perry and Verlhac 2008). Although the role
of Ca2þ and the molecular pathways required
for MII exit and embryo development are
conserved in vertebrate eggs, it is presently
unknown how Plk1 regulates Emi2 function in
mammals.
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CG exocytosis is another event of egg acti-
vation that depends on Ca2þ release (Kline and
Kline 1992a). CG release underlies, at least in
part, the cortical remodeling that occurs after
fertilization (Sardet et al. 2002), and modifies
the components of zona pellucida to prevent
polyspermy, thereby ensuring the formation of
a diploid zygote. Although it was believed that
the effects of Ca2þ on CGs were transduced by
activation of protein kinase C (PKC), as PKC
agonists promoted CG release and other activa-
tion events, later studies using PKC inhibitors
failed to prevent fertilization-associated CG
release (Ducibella and LeFevre 1997). Impor-
tantly, the widespread expression of PKC iso-
forms in oocytes (Gallicano et al. 1997;
Eliyahu et al. 2001; Page Baluch et al. 2004),
along with their distinct cellular distribution
(Viveiros et al. 2001; Page Baluch et al. 2004),
and the implications of their impact on Ca2þ

influx (Halet 2004), suggest important roles
for these enzymes in setting off embryo develop-
ment. CaMKII was also expected to participate
in CG exocytosis, although the aforementioned
studies using constitutively active forms of the
protein (Knott et al. 2006) or eggs devoid of
CaMKII have ruled out this possibility (Backs
et al. 2010; Chang et al. 2009). Recent studies
have implicated myosin light chain kinase
(MLCK), another Ca2þ-dependent kinase, as
being involved in CG exocytosis in mouse fertil-
ization, as pharmacological inhibitors greatly
diminished their release in response to Ca2þ

stimulation (Matson et al. 2006). The role of
MLCK on CG exocytosis is not unexpected, as
myosin II, a direct target of MLKC, and actin
microfilaments are involved in cortical reorgan-
ization in the mouse (Simerly et al. 1998; Deng
et al. 2005) and zebrafish eggs (Becker and Hart
1999). Importantly, the molecular regulation of
MLCK needs to be determined, as besides its
requirement for Ca2þ, it is highly sensitive to
phosphorylation, and kinases such as ERK
and Rho that are active during meiosis might
have regulatory roles (Deng et al. 2005). In sum-
mary, the molecular effectors for several events
of egg activation downstream of Ca2þ have
been uncovered over the last decade. Although
important gaps remain, the requirement for

[Ca2þ]i oscillations for initiation of mamma-
lian development is unambiguous.

Single versus Multiple [Ca2þ]i Increases

The early ionophore studies hinted to a pivotal
role for Ca2þ in the initiation of development,
especially with regard to the increases in
[Ca2þ]i, but not in Kþ or pH, induced all early
and late events of egg activation (Steinhardt and
Epel 1974). Nevertheless, whether or not such
changes happened during normal fertilization
and how their inhibition affected development
was unknown. Evidence soon accumulated, first
using the luminescent protein “aequorin” syn-
thesized by Shimomura and colleagues (Shimo-
mura and Johnson 1970) that explosive [Ca2þ]i

increases accompanied fertilization in medaka
fish eggs (Ridgway et al. 1977) and in sea urchin
eggs (Steinhardt et al. 1977). Unlike the single
[Ca2þ]i increases detected in these early record-
ings, measurements of [Ca2þ]i changes in mam-
mals revealed that their eggs displayed [Ca2þ]i

oscillations (Cuthbertson et al. 1981; Miyazaki
and Igusa 1981). Although oscillatory [Ca2þ]i

responses were subsequently reported in non-
mammalian species, mammalian eggs are the
only ones whose oscillations extend for over
several hours (Stricker 1999). Further, research
soon followed demonstrating that abrogation
of fertilization-associated [Ca2þ]i increases,
which was accomplished with the Ca2þ chelator
BAPTA, prevented all events of egg activation
and prevented the initiation of development
(Kline and Kline 1992a). Together, these results
confirmed the widespread role of Ca2þ as the
activation signal for development.

Although the elevation of [Ca2þ]i is ubiqui-
tous in fertilization, the presence of long-lasting
oscillations is a hallmark of mammalian fer-
tilization (Fig. 1B). Remarkably, the develop-
mental advantages and underlying molecular
changes associated with these oscillations
remain unclear. Research by Ducibella et al.
underscored the varying sensitivities of egg
activation events to [Ca2þ]i increases. For in-
stance, most events of egg activation, such as
CG exocytosis, meiotic resumption and recruit-
ment of maternal mRNAs require fewer [Ca2þ]i
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increases for initiation than for completion, and
early events such as CG exocytosis and release
from MII arrest require fewer [Ca2þ]i responses
for completion than later events, such as PN for-
mation and recruitment of maternal mRNAs
(Ducibella et al. 2002). In this context, oscilla-
tions make sense, especially to promote CycB
degradation and inactivation of MPF, as CycB
synthesis is continuous (Nixon et al. 2002;
Marangos and Carroll 2004) and a single [Ca2þ]i

increase would be unable to promote its
complete degradation (Nixon et al, 2002).
Nevertheless, if exit of MII arrest is overcome
either by a single, overwhelming [Ca2þ]i

increase induced by an electrical pulse (Ozil
et al. 2005) or by expression of a constitutively
active form of CaMKII, development to the
blastocyst stage is only mildly impaired (Madg-
wick et al. 2005; Ozil et al. 2005; Knott et al.
2006). This apparent lack of impact of [Ca2þ]i

oscillations on preimplantation development
is in contrast to another report showing that
both premature termination or excessive Ca2þ

stimulation negatively impacts preimplantation
and postimplantation development, and alters
embryonic gene expression (Ozil et al. 2006).
Similar research documented that parthenoge-
notes generated without a [Ca2þ]i increase by
exposing eggs to cycloheximide, a protein syn-
thesis inhibitor, showed altered gene expression
and poor development to the blastocyst stage
(Rogers et al. 2006). Nonetheless, development
of these embryos was rescued to the same extent
by exposure to a single or multiple [Ca2þ]i in-
creases, casting doubts on the beneficial effects
of [Ca2þ]i oscillations on development.

One way that multiple [Ca2þ]i elevations
may pose a developmental advantage is by spe-
cifically stimulating embryonic gene expression.
The recruitment of maternal mRNAs, which
mediates new protein synthesis after fertiliza-
tion, takes place during the period of oscilla-
tions and is susceptible to the magnitude of
the [Ca2þ]i stimulation; more pulses more pro-
tein synthesis (Ducibella et al. 2002). To this
end, one of the two transcripts identified after
fertilization is cyclin A (Oh et al. 1997; Fuchi-
moto et al. 2001), which participates in the acti-
vation of the embryonic genome (Fuchimoto

et al. 2001). Thus, based on research in hippo-
campal neurons, the suggestion was made that
pulsatile activation of CaMKII may underlie
the enhanced gene expression observed after
repeated [Ca2þ]i pulses (Ducibella et al. 2006).
Subsequent research, however, showed that
recruitment of mRNAs could occur independ-
ently of this kinase (Backs et al. 2010). Fur-
thermore, it might not be under the exclusive
control of Ca2þ, as in the absence of cell cycle
progression, fertilization-initiated oscillations
failed to induce recruitment of mRNAs (Backs
et al. 2010). Therefore, it might that the total
magnitude of the [Ca2þ]i increase, as proposed
by Ozil and colleagues (Ducibella et al. 2006;
Ozil et al. 2006) rather than the temporal pat-
tern of [Ca2þ]i increases is the determinant fac-
tor of egg activation in mammals. Nonetheless,
oscillations may be necessary, as besides signal-
ing the stepwise completion of all events of egg
activation, it might be the only manner whereby
mammalian eggs can attain a Ca2þ signal of suf-
ficient magnitude to ensure CycB degradation
without undermining other cellular functions.

MOLECULAR PLAYERS RESPONSIBLE FOR
[Ca2þ]i OSCILLATIONS DURING
FERTILIZATION

The [Ca2þ]i oscillations that underlie egg acti-
vation in mammals rely on molecular players
widely characterized in other cellular systems
in which they mediate [Ca2þ]i responses in-
duced by a variety of agonists such as hormones,
growth factors and antigen-presenting mecha-
nisms (Berridge et al. 2000; Clapham 2007).
In gametes however, the function and regula-
tion of some of these molecules has been
adapted to respond to the unique requirements
of fertilization. For instance, oocytes require
weeks or months of preparation before being
ready for fertilization, because interruptions in
the cell cycle are imposed during meiosis to syn-
chronize oocyte and follicular growth before
reinitiating meiosis and ovulation. It is believed
that during this growth phase, oocytes do not
require [Ca2þ]i elevations, and Ca2þ release
mechanisms are quiescent (Carroll et al. 1994).
Importantly, these mechanisms are quickly
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reactivated in fully-grown oocytes after receiv-
ing an LH surge, which is the endocrinological
signal that induces oocyte maturation from the
germinal vesicle (GV) stage. During this process,
which may last from 12 to 48 hr according to the
species, the oocytes’ Ca2þ release mechanisms
undergo reprogramming and optimization so
that fertilization can initiate [Ca2þ]i oscillations.
The sperm also undergoes a protracted prepa-
ration, undergoing changes during transport
through the male reproductive tract and more
closely as it approaches the site of fertilization in
the female tract (Suarez 2008b). Remarkably,
some of these changes also involve [Ca2þ]i in-
creases (Suarez 2008a), although theyoccur while
preserving the sperms’ Ca2þ activating signal.

Two molecules stand out in mammalian fer-
tilization as central to the initiation and mainte-
nance of [Ca2þ]i oscillations; namely, the IP3R1
receptor in eggs and PLCz in the sperm. Here
we will describe the evidence supporting their
role in mammalian fertilization, focusing on
regulatory mechanisms and highlighting some
of the unanswered questions regarding their
regulation. We will also review other molecular
mechanisms required to maintain oscillations,
especially those affecting Ca2þ influx whose
function in eggs has not been widely investi-
gated (Fig. 1C).

IP3R1

IP3R1 in MII Eggs

The IP3R is the main intracellular Ca2þ-release
channel of almost all mammalian cell types
and is located in the endoplasmic reticulum
(ER), the cells’ main Ca2þ reservoir (reviewed
in Berridge et al. [2000]; Bootman et al.
[2001]). The IP3R is a large protein (.250
kDa) and functions as a tetramer (.1000
kDa). Each monomer consists of more than
2600 amino acids and can be broadly divided
into three regions, a cytosolic amino-terminal
domain that binds IP3, a regulatory domain
that contains multiple regulatory sites for
Ca2þ, ATP, and other modulatory molecules/
proteins (MacKrill 1999; Patterson et al. 2004)
and a carboxy-terminal channel domain that
contains six transmembrane domains and a

short cytosolic tail. As described by Taylor and
Tovey (2010), the activation and opening of
the IP3R1 requires binding by both Ca2þ and
IP3, and the regulation of IP3-induced Ca2þ re-
lease (IICR) by Ca2þ adopts a bell-shape form,
as IICR is stimulated at low [Ca2þ]i and inhib-
ited at high [Ca2þ]i (Taylor and Tovey 2010;
Iino 1990; Finch et al. 1991). This dual regula-
tion of IP3R1 by Ca2þ and IP3 makes it espe-
cially suited to support long lasting oscillations.

There exists three IP3R isoforms (reviewed
in (Berridge et al. [2000]), and mammalian
oocytes and eggs and their surrounding cells
express all isoforms (Fissore et al. 1999a; Fissore
et al. 1999b; Diaz-Munoz et al. 2008). Impor-
tantly, oocytes and eggs overwhelmingly express
the type I IP3R isoform (Kume et al. 1997; Fis-
sore et al. 1999a; Jellerette et al. 2000; Iwasaki
et al. 2002). The initial suggestion that IP3R
may play a role during fertilization arose from
studies in sea urchin eggs in which an increase
in phosphoinositide metabolism accompanied
fertilization (Turner et al. 1984), an observation
that was soon followed by the demonstration
that injection of IP3 triggered Ca2þ release
(Clapper and Lee 1985) and cortical granule
exocytosis (Turner et al. 1986). Studies followed
in hamster oocytes in which injection of IP3 and
guanine nucleotides initiated repeated Ca2þ re-
lease from intracellular stores (Miyazaki 1988).
Purification and identification of the IP3R pro-
tein from the cerebellum occurred in the late
1980s (Maeda et al. 1988; Furuichi et al.
1989), and confirmation of its significance in
mammalian fertilization took place soon after
when both the initiation of [Ca2þ]i oscillations
(Miyazaki et al. 1992) and egg activation (Xu
et al. 1994) were prevented by injection of a
functional blocking antibody raised against
the Carboxy-terminal end of mouse IP3R1. Sub-
sequent studies confirmed the role of IP3R1 in
fertilization in other species (Parys et al. 1994;
Thomas et al. 1998; Yoshida et al. 1998; Runft
et al. 1999; Goud et al. 2002; Iwasaki et al. 2002).

Fertilization-associated [Ca2þ]i oscillations
in mouse zygotes undergo changes during the
transition from the MII stage into interphase,
becoming initially less frequent before ceasing
altogether at the time of PN formation (Jones
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et al. 1995; Kono et al. 1996; Deguchi et al.
2000). During this transition, the IP3R1
undergo several modifications and it is possible
that either singly or collectively these influence
the pattern of oscillations. For example, mam-
malian eggs richly express IP3R1, as only 20
mouse eggs are required for its detection by
Western blotting (Parrington et al. 1998; Jeller-
ette et al. 2000) and within 4 h after sperm entry
the IP3R1 mass is reduced approximately to a
half (Parrington et al. 1998; Deguchi et al.
2000; Kurokawa and Fissore 2003). Moreover,
recent research shows that IP3R1 degradation
alone can explain the widening of the [Ca2þ]i

intervals, although not the termination of oscil-
lations (Lee et al.). Changes in IP3R1 localiza-
tion may also affect the pattern of oscillations.
In eggs, the IP3R1 and the ER are organized in
clusters near the cortex, a location that might
facilitate the initiation of [Ca2þ]i oscillations,
as the PLCz concentration may be higher in
this area after sperm-egg fusion. The accumula-
tion of ER clusters in the cortex may also
enhance IP3R1 sensitivity, as [Ca2þ]i oscilla-
tions originate from the hemisphere opposite
to the MII spindle where ER/IP3R1 clusters
are particularly dense (Kline et al. 1999; Dumol-
lard et al. 2004). Interestingly, in Xenopus,
IP3R1s that are more sensitive move to the cor-
tex from the subcortex as oocytes progress to
the MII stage (Boulware and Marchant 2005).
Importantly, in the mouse, ER (FitzHarris
et al. 2003) and possibly IP3R1 (our unpub-
lished data) cortical clusters disappear ahead
of the termination of the oscillations, suggesting
that they are not required for the persistence of
oscillations. Nevertheless, the precise distribu-
tion of IP3R1 in eggs suggest an important
role during fertilization, which may correspond
to the need for localized high amplitude [Ca2þ]i

increases to facilitate CG release to prevent
polyspermy (McAvey et al. 2002).

IP3R1 function may also be regulated by
phosphorylation. Not surprisingly, the first re-
port describing IP3R1 phosphorylation in eggs
suggested an association with cell cycle kinases
(Jellerette et al. 2004), which play a prominent
role in the MII arrest. IP3R1 phosphorylation
in mouse eggs was first characterized using an

antibody that identifies proteins phosphory-
lated at the MPM-2 epitope, which consists
of phosphorylated serines(S)/threonines(T)
next to prolines(P) surrounded by hydrophobic
amino acids (Westendorf et al. 1994). IP3R1
becomes phosphorylated at a MPM-2-detect-
able epitope during maturation (Lee et al.
2006) reaching maximal reactivity at the MII
stage (Fig. 2). Following egg activation, it be-
comes gradually dephosphorylated and phos-
phorylation is not regained at first mitosis
(Lee et al. 2006). The responsible kinases for
IP3R1 MPM-2 phosphorylation remain to be
determined, although several M-phase kinases,
such as polo-like kinase 1 (Plk1), mitogen-acti-
vated protein kinase (MAPK), and Cdk1 can all
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Cdk1
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Mature egg

SERCA
ER
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?

?

?
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?
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Figure 2. IP3R1-mediated Ca2þ release increases dur-
ing mouse oocyte maturation. Several factors may
contribute to this, including the increased Ca2þ con-
tent of the stores, IP3R1 organization into clusters
and IP3R1 phosphorylation. Question marks suggest
mechanisms that are suspected to contribute to Ca2þ

influx and increased Ca2þ store content. Phosphory-
lating kinases are Polo-like kinase-1, Cyclin-depend-
ent kinase-1, and Mitogen-associated protein kinase.
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phosphorylate this epitope (Joughin et al.
2009). Our studies in mouse oocytes using
pharmacological inhibitors revealed that Plk1
might be involved in MPM-2 phosphorylation
early during maturation (Ito et al. 2008; Vander-
heyden et al. 2009) and MAPK during the MI
to MII transition, although whether they di-
rectly phosphorylate the receptor remains to
be shown. Research in DT40 B-cell lymphocytes
showed IP3R1 phosphorylation by MAPK at
S436, a residue that lies in the receptor’s ligand
binding domain within a consensus site for
the kinase; using back cross phosphorylation
studies, this group also showed IP3R1 MAPK
phosphorylation of mouse MII eggs (Bai et al.
2006). This study did not examine the role of
this phosphorylation in eggs, although in mi-
crosome preparations MAPK IP3R1 phosphor-
ylation decreased IP3 binding and Ca2þ release
(Bai et al. 2006). In contrast to this, phosphor-
ylation of IP3R1 in somatic cells by Cdk1, which
was observed to occur in several conserved
Cdk1 motifs under in vitro and in vivo con-
ditions, enhanced IP3 binding and Ca2þ release
(Malathi et al. 2003; Malathi et al. 2005). IP3R1
phosphorylation within Cdk1 and MAPK con-
sensus sites was reported in Xenopus oocytes
and independent activation of these kinases
increased IP3R-mediated Ca2þ release (Sun
et al. 2009). Notably, an earlier study in mouse
zygotes had dismissed the role of MPF and
MAPK on [Ca2þ]i oscillations, as the continua-
tion was unaltered by the decline in MPF activ-
ity, which occurs at the time of second PB
extrusion, or after inhibition of the MAPK path-
way with U0126 (Marangos et al. 2003). Impor-
tantly, the phosphorylation status of IP3R1 was
not examined in that study, and subsequent
results found that IP3R1 MPM-2 phosphoryla-
tion outlasts MPF activity (Lee et al. 2006) and
that 4 hours U0126 exposure does not eliminate
MPM-2 IP3R1 reactivity (our unpublished
observations). A possible interpretation for
these results is that IP3R1 phosphorylation,
and the phosphorylation of other M-phase sub-
strates in eggs is safeguarded by suppression of
phosphatase(s) activity, a function that has
been attributed to the Greatwall kinase in
mitotic cells and Xenopus egg extracts (Castilho

et al. 2009). Therefore, accumulating evidence
suggests a regulatory role for phosphorylation
on IP3R1 function during fertilization, although
the responsible kinases, phosphorylation sites
and their impact on IP3R1 function remain to
be clarified.

IP3R1 in Maturing Oocytes

The precise spatio-temporal pattern of
sperm-associated [Ca2þ]i responses in verte-
brate eggs is established during oocyte matura-
tion. For example, in vitro fertilized mouse GV
oocytes show fewer [Ca2þ]i oscillations and
each [Ca2þ]i increase shows reduced duration
and amplitude than those observed in fertilized
MII eggs (Jones et al. 1995a; Mehlmann et al.
1996). The molecular events underlying these
changes are not understood, although changes
in IP3R1 sensitivity, i.e., the receptor’s ability
to conduct Ca2þ in response to IP3, are thought
to be involved. Importantly, studies to elucidate
these mechanisms are needed, but given the
recalcitrant nature of some of these changes in
MII eggs, it is suggested that they should be
performed during maturation.

As discussed above, IP3R1 phosphoryla-
tion during maturation by M-phase kinases
is thought to enhance Ca2þ release in eggs.
MPM-2 reactivity, which is used as a marker
of their activity, is first evidenced in IP3R1 at
the time of GV breakdown (GVBD) and persists
until the MII stage, a period that closely coin-
cides with the increased function of IP3R1 dur-
ing maturation (Mehlmann and Kline 1994).
Inhibition of Plk1, a kinase involved in the acti-
vation of Cdk1, reduced and delayed MPM-2
IP3R1 reactivity and decreased [Ca2þ]i release
through IP3R1 at the GVBD stage (Ito et al.
2008a; Vanderheyden et al. 2009). Nonetheless,
the persistent presence of BI2556, a nonrever-
sible and specific Plk1 inhibitor, did not elimi-
nate MPM-2 IP3R1 reactivity, which even
experienced a partial recovery, suggesting that
other kinases, possibly Cdk1, might phosphor-
ylate IP3R1 (our unpublished observation).
Investigation of the role of Cdk1 on IP3R1 phos-
phorylation in mouse oocytes/eggs is hindered
by the findings that roscovitine, a specific Cdk1
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inhibitor, indirectly inhibits Plk1 activity (our
unpublished results) and greatly reduces Ca2þ

store content ([Ca2þ]ER) (Deng and Shen 2000),
thereby compromising the interpretation of
the results. Inhibition of the MAPK pathway,
which does not affect the aforementioned
kinases and only mildly affects IP3R1 MPM-2
phosphorylation after the MI stage, greatly re-
duces [Ca2þ]i responses (Lee et al. 2006). It is
therefore possible that IP3R1 phosphorylation
by MAPK is not recognized by the MPM-2 anti-
body or, alternatively, that the MAPK pathway
affects other aspects of Ca2þ homeostasis. In
this regard, one study found an altered Ca2þ

content in U1026-treated oocytes (Matson
and Ducibella 2007) whereas the other did not
(Lee et al. 2006). Therefore, additional muta-
tional studies are needed to clarify the impact
of M-phase kinases on IP3R1-mediated Ca2þ

release in mammalian oocytes and eggs.
Besides M-phase kinases, numerous studies

in somatic cells have shown that IP3R isoforms
can be phosphorylated by various, more wide-
ranging kinases that generally increase IP3-

R-mediated Ca2þ release (Bezprozvanny 2005;
Vanderheyden et al. 2009), although phosphor-
ylation by PKB reportedly reduces IP3R-
mediated Ca2þ release (Szado et al. 2008). The
most commonly implicated kinases include
PKA, PKC, and CaMKII, all of which have
important physiological functions in oocytes
and eggs (Ducibella and Fissore 2008). Exten-
sive phosphopeptide mapping combined with
substrate specific antibodies in Xenopus oocytes
found that IP3R1 is uniformly phosphorylated
throughout maturation in both PKA consensus
motifs, whereas PKC sites seemed unperturbed
(Sun et al. 2009). Whether or not PKA IP3R1
phosphorylation has functional consequences
in oocytes is unknown, although in somatic
cells this phosphorylation has been associated
with increased IP3R1 activity (DeSouza et al.
2002) and reduced [Ca2þ]ER, which may repor-
tedly underlie the antiapoptotic effects of some
members of the Bcl-2 family of proteins (Oakes
et al. 2005). Moreover, it has been suggested
that these proteins modify the PKA-associated
IP3R1 phosphorylation status (Oakes et al.
2005), although research from other laboratories

has not confirmed this mechanism of action of
Bcl-2 family protein on IP3R1 function (Rong
et al. 2008; Rong et al. 2009). It is worth noting
that [Ca2þ]ER is low in GVoocytes in spite of per-
sistent Ca2þ influx, as evident by the continuous
spontaneous oscillations at this stage (Carroll
and Swann 1992). On GVBD, however, [Ca2þ]ER

undergoes a marked increase (Jones et al. 1995a),
which occurs concurrently with the termination
of the oscillations that implies suppression/
reduction of Ca2þ influx. Given that cAMP levels
decrease at GVBD (Norris et al. 2009), it is there-
fore possible that a Ca2þ leak mechanism regu-
lated by PKA IP3R1 phosphorylation may be
implicated in Ca2þ homeostasis during oocyte
maturation. Future studies should examine
whether PKA-mediated IP3R1 phosphorylation
changes during mouse oocyte maturation.

The differential redistribution of ER/IP3R1
may also enhance IP3R1 function during oocyte
maturation. Before the initiation of maturation,
the ER in mouse oocytes shows a homogeneous
distribution with slight accumulation around
the GV, although by the MII stage, the ER dis-
plays a fine tubular network appearance with
dense accumulation in the cortex (Mehlmann
et al. 1995), which is thought to facilitate the
initiation of sperm-induced [Ca2þ]i oscillations
(Kline et al. 1999). The dramatic reorganization
ensues at about the time of GVBD and is under-
pinned by distinct components of the cytoskele-
ton (FitzHarris et al. 2007), as the migration of
the ER toward the condensing chromosomes is
dependent on microtubules, whereas its disper-
sal from the MI spindle to the egg’s cortex relies
on actin microfilaments (FitzHarris et al. 2003).
The IP3R1 are also organized in cortical clusters
at the MII stage (Mehlmann et al. 1996; Fissore
et al. 1999a; Ito et al. 2008a), although it
remains to be established whether the same
cytoskeletal mechanisms that control ER organ-
ization control IP3R1 distribution. Curiously, in
spite of the large remodeling that the oocyte’s
ER undertakes, it is unknown whether this
reorganization affects IP3R1’s sensitivity and
the ability to initiate and support oscillations
in mammalian eggs. Thus, preventing ER and
possibly IP3R1 cortical cluster organization
with appropriate cytoskeleton inhibitors would
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help elucidate the influence of their reorganiza-
tion on IP3R1 function in oocytes.

Lastly, changes in other cytoplasmic param-
eters are likely to contribute to increase IP3R1
sensitivity in oocytes. For example, the increase
in [Ca2þ]ER during maturation (Kline and
Kline 1992a; Jones et al. 1995a) may not only
increase the amount of available Ca2þ for
release, but may also increase the receptor’s sen-
sitivity (Missiaen et al. 1991). The increase in
[Ca2þ]ER is likely the result of careful regulation
of the pathways that control Ca2þ influx and
efflux, which in Xenopus oocytes are known to
be actively regulated during maturation (El-
Jouni et al. 2005; Yu et al. 2009). Remarkably,
the molecular identity and significance of these
mechanisms in mammalian oocytes remain
largely unknown and will be discussed below.

Ca2þ Homeostasis in Oocytes and Eggs

[Ca21]i Clearing Mechanisms

[Ca2þ]i oscillations in mammals continue for
long periods that can exceed 20 h (Fissore
et al. 1992; Sun et al. 1992). For [Ca2þ]i

responses to continue without attenuation fol-
lowing a [Ca2þ]i increase, [Ca2þ]i levels need
to be returned to baseline and stores refilled in
anticipation of the next [Ca2þ]i response. To
bring [Ca2þ]i to baseline, cells either return
free cytosolic Ca2þ into the ER by the action
of the sarco-endoplasmic reticulum Ca2þ

ATPases (SERCAs), and/or extrude it by the
action of plasma membrane (PM) Ca2þATPases
(PMCAs) and Naþ/Ca2þ exchangers (Berridge
et al. 2000; Bootman et al. 2001). Few studies
have addressed the function of these molecules
in mammalian oocytes/eggs, although the pres-
ence of SERCA2b can be surmised by the alter-
ation of [Ca2þ]i levels caused by exposure to
thapsigargin, an inhibitor of SERCA (Kline
and Kline 1992b; Lawrence and Cuthbertson
1995; Machaty et al. 2002). Exposure of MII
eggs to thapsigargin causes a slow and steady
increase in [Ca2þ]i followed by a protracted
decline, whereas in fertilized eggs it prevents
the continuation of oscillations (Kline and
Kline 1992b). Importantly, the molecular pres-
ence and cellular distribution of SERCA2b has

not yet been examined in mammalian oocytes,
although transcripts have been found in GV
and MII stage oocytes (Su et al. 2007). In Xeno-
pus oocytes, expression of the SERCA2 protein
was documented by immunofluorescence and
it was shown to undergo reorganization similar
to that described for IP3R (El-Jouni et al. 2005).
Given that the levels of [Ca2þ]ER change dra-
matically during maturation, it is possible that
SERCA activity may be actively regulated during
this process. In somatic cells, SERCA activity
can be regulated by different mechanisms, in-
cluding binding to regulatory proteins such
phospholamban, sarcolipin, and by several
posttranslational modifications (reviewed in
Brini and Carafoli [2009]). An earlier report
in Xenopus oocytes showed that SERCA2b activ-
ity could be regulated by association with the ER
chaperone protein, calnexin, which inhibited
the pump’s activity; phosphorylation of cal-
nexin relieved both the association with SERCA
and its inhibition (Roderick et al. 2000). Al-
though additional studies are needed to under-
stand the conservation of this mechanism, it is
worth noting that addition of roscovitine pre-
maturely, albeit reversibly, terminates [Ca2þ]i

oscillations during fertilization (Deng and
Shen 2000). Although the inhibitor’s target
was not elucidated, [Ca2þ]ER levels were severely
depleted, suggesting an effect either on SERCA
activity or on the Ca2þ influx mechanism(s).
Future studies should explore the pathways
involved in regulation of SERCA activity in mam-
malian eggs, as its function in sustaining long-
term [Ca2þ]i oscillations after fertilization.

Besides the ER sequestration of Ca2þ, cyto-
solic [Ca2þ]i can also be returned to baseline by
the action of PMCA and the Naþ/Ca2þ ex-
changer, which release Ca2þ into the external
media. The functional activity of Na/Ca2þ ex-
changer was shown in mouse eggs by two differ-
ent reports (Pepperell et al. 1999; Carroll 2000).
It was shown that elimination of Naþ from the
external media caused [Ca2þ]i responses, or
accelerated existing ones, and these responses
were ascribed to reverse mode Naþ-Ca2þ

exchange. In spite of the initial changes, even
in the absence of external Naþ, [Ca2þ]i levels
returned to baseline levels, implying that the
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action of PMCA may be more physiologically
relevant (Carroll 2000). The molecular presence
of PMCA has not been documented in mam-
malian oocytes/eggs, although in Xenopus
oocytes PMCA1 seems to contribute to the
shaping of [Ca2þ]i responses (El-Jouni et al.
2005; El-Jouni et al. 2008). For instance, in GV
oocytes the presence of 1 mM La3þ, which is
known to inhibit PMCA function, delay the
half-time decay of a [Ca2þ]i increase induced
by iononomycin, but the same treatment was
without effect in MII eggs, suggesting that the
pump’s activity is down regulated during matu-
ration (El-Jouni et al. 2005). Research by these
investigators also showed that most of the
PMCA in the plasma membrane becomes inter-
nalized during maturation explaining, at least
in part, the lower [Ca2þ]i clearing capacity of
eggs versus oocytes (El-Jouni et al. 2005). Nev-
ertheless, it remains to be shown how PMCA
plays a role in mammalian fertilization and
what are the putative regulatory mechanisms,
as complete internalization seems unlikely in
this system, given that [Ca2þ]i increases occur
uninterruptedly for hours in these eggs.

The mitochondria may also contribute to
regulate baseline [Ca2þ]i in the presence of os-
cillations (Duchen 2000; Rizzuto et al. 2000),
as they can sequester Ca2þ into the matrix
thereby decreasing the overall cytosolic Ca2þ

load (Rizzuto et al. 1998). Despite early evidence
to the contrary (Liu et al. 2001), this does not
seem to be the main function in eggs, as inhibi-
tion of Ca2þmitochondrial uptake does not im-
mediately terminate sperm-initiated oscillations
(Dumollard et al. 2004). Instead, and possibly
because of its vicinity to the IP3R1/ER, the Ca2þ-
driven ATP output may be the mitochondria’s
most critical contribution to Ca2þ homeostasis
in MII eggs, as it maintains SERCA activity,
which is required to sustain sperm-triggered
Ca2þ oscillations (Dumollard et al. 2004).

Ca21 Influx Mechanisms

Given that a fraction of Ca2þ from each [Ca2þ]i

increase is secreted out of the egg by the action
of PMCA or the Naþ/Ca2þ exchanger, external
Ca2þ must be taken in to maintain [Ca2þ]ER.

Ca2þ influx plays a pivotal role in fertilization,
as sperm-initiated [Ca2þ]i oscillations cease
prematurely in the absence of external Ca2þ

(Igusa and Miyazaki 1983; Igusa et al. 1983;
Winston et al. 1995). Nevertheless, the mole-
cules that mediate Ca2þ influx and their regula-
tion remain poorly characterized. Oocytes/eggs
and somatic cells use several Ca2þ influx mech-
anisms, including receptor-operated channels
(ROCs) and voltage-operated Ca2þ channels
(VOCs) (Berridge et al. 2000; Smyth et al.
2006), the last of which is active in mammalian
oocytes and eggs (Tosti and Boni 2004). Nota-
bly, although changes in membrane potential
accompany fertilization in mammals, several
findings suggest that they might not be causally
linked to the replenishment of the stores, as
[Ca2þ]i increases precede changes in membrane
potential (Igusa et al. 1983), Ca2þ influx contin-
ues between [Ca2þ]i increases (McGuinness
et al. 1996) and, in the mouse, the changes in
membrane potential are almost imperceptible
(Igusa et al. 1983). These findings raise the pros-
pect that Ca2þ influx in oocytes may be
attained, at least in part, by a different mecha-
nism(s). Store-operated Ca2þ entry (SOCE),
which is associated with [Ca2þ]ER levels (Put-
ney 1986), may fulfill this role in oocytes/
eggs. The presence of store operated Ca2þ chan-
nels (SOC) to mediate SOCE and their electro-
physiological properties were surmised in mast
cells and in T-cells more than 10 years (Lewis
and Cahalan 1989; Zweifach and Lewis 1993),
although their molecular identity remained elu-
sive until recently. Using a small RNA interfer-
ence (RNAi) screen, two groups found that
STIM1 was required for SOCE, as its reduction
decreased Ca2þ influx in response to thapsigar-
gin (Liou et al. 2005; Roos et al. 2005). Given
that STIM1 lacks an obvious channel, the search
was on to find the required channel partner pro-
tein, one of which was quickly identified as
Orai1 (Feske et al. 2006; Vig et al. 2006). Besides
the recent demonstration of molecular coupling
at the cellular level between STIM1 and Orai1
(Park et al. 2009), spontaneous mutations of
these proteins in humans have been linked to
related immune response-related diseases, con-
clusively implicating their function in the same
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Ca2þ influx pathway (Feske et al. 2005; Picard
et al. 2009). For general information about
Stim and Orai family of proteins, see Lewis
2011.

Evidence for SOCE in mammalian eggs was
first observed after the application of thapsigar-
gin, which caused a large Ca2þ influx after add-
ing Ca2þ back to the media, (Kline and Kline
1992b; Machaty et al. 2002). Subsequent studies
implicated SOCE in fertilization, as using the
manganese-quenching technique it was found
that in mouse eggs the initiation of each
[Ca2þ]i increase coincided with divalent cation
influx (McGuinness et al. 1996). Although
SOCE was also described in human eggs (Mar-
tin-Romero et al. 2008), the understanding of
the molecular underpinning of this influx in
mammalian oocytes remains poor.

Transient receptor potential (TRP) ion
channels (Venkatachalam and Montell 2007),
which show widespread cellular distribution
and display numerous regulatory mechanisms,
were considered as possible mediators of Ca2þ

influx in eggs. Expression at the transcript level
was noted in porcine and mouse oocytes for
several of the TRP family members (Machaty
et al. 2002; Su et al. 2007), although evidence
for their involvement in fertilization has yet to
materialize. In contrast, two recent manuscripts
examined the expression and function of
STIM1 in oocytes. In porcine oocytes, STIM1
expression was detected at the mRNA level,
and over-expression or knock down of STIM1
enhanced/reduced, respectively, thapsigargin-
promoted Ca2þ influx. Expression of YFP-
tagged STIM1 suggested ER localization and
“puncta” reorganization in these oocytes,
although more conclusive studies are needed
(Koh et al. 2009). In mouse eggs, STIM1 was
detected by western blotting, although the
apparent molecular weight (Gomez-Fernandez
et al. 2009) seems lower compared to published
data in mouse somatic cells (Manji et al. 2000).
Further, the detection of endogenous STIM1
by immunofluorescence revealed large patches
(Gomez-Fernandez et al. 2009), which seem
disproportionate to the reportedly low
abundance of this protein in most cell types
(Park et al. 2009). Lastly, whereas transcripts

of Orai1 and two have been detected in mouse
oocytes and eggs (Su et al. 2007), their pro-
tein expression has not been confirmed, and
therefore their involvement in Ca2þ influx
during mammalian fertilization remains to be
shown.

A better understanding of SOCE’s molecu-
lar effectors and regulatory mechanisms already
exists in Xenopus oocytes and eggs (Machaca
and Haun 2002; Yu et al. 2009). Initial research
showed inactivation of SOCE, which is mani-
fested by the uncoupling of Ca2þ store de-
pletion and Ca2þ influx, around the time of
GVBD (Machaca and Haun 2002). Although
the inactivating mechanism was not known, it
was determined to be associated with the activ-
ities of the M-phase kinases that regulate GVBD
(Machaca and Haun, 2002). A follow up study
found that during GVBD Orai1 is internalized
from the plasma membrane, and STIM1’s abil-
ity to form clusters and puncta is obliterated,
which together disable SOCE (Yu et al. 2009).
Earlier, an uncoupling between Ca2þ influx
and Ca2þ store content was reported in somatic
cells during mitosis (Preston et al. 1991). Those
findings were recently extended, and SOCE
inactivation during mitosis was associated
with Stim1 phosphorylation by Cdk1, which
prevents its rearrangement and precludes cou-
pling and activation of Orai1 (Smyth et al.
2009). STIM1 phosphorylation by Cdk1 was
also noted in the foregoing Xenopus study,
although it was deemed to have minor impact
on STIM1 function (Yu et al. 2009). It is
noteworthy that a conserved Cdk1 phosphory-
lation site present in mammalian STIM1 is
absent from Xenopus STIM1. Importantly,
unlike the previous examples, SOCE is opera-
tional during the MII stage of mammalian
fertilization. Therefore, future studies should
examine the regulatory mechanism(s) that con-
trol SOCE during maturation and fertilization
in mammals.

PLCz

There has been much debate and speculation as
to the mechanism(s) that triggers [Ca2þ]i oscil-
lations during mammalian fertilization. Several
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excellent recent reviews have addressed this
topic in depth (Swann et al. 2006; Parrington
et al. 2007; Horner and Wolfner 2008b) and
therefore only the most salient and outstanding
aspects of PLCz will be discussed here. As noted
earlier, research in a variety of species including
mammals showed that fertilization-associated
[Ca2þ]i responses require the same agonists
and signaling cascades that cause Ca2þ release
in somatic cells (Miyazaki et al. 1993; Miyazaki
and Ito 2006). Nevertheless, although stimu-
lation of these pathways induced [Ca2þ]i re-
sponses, they failed to reproduce the pattern
of [Ca2þ]i oscillations associated with mamma-
lian fertilization, leaving open the possibility
that a different mechanism may underpin oscil-
lations in these species (Swann et al. 1989).
Observations first in sea urchin eggs and then
in ascidian eggs noted that injection of sperm
extracts caused PM currents similar to that
observed in fertilization (Dale et al. 1985; Dale
1988). Subsequently, studies in mammals
showed that injections of sperm extracts initi-
ated fertilization-like oscillations and egg acti-
vation (Stice and Robl 1990; Swann 1990).
Based on these results and in light of the pro-
tracted nature of the [Ca2þ]i oscillations, which
can vastly exceed the interaction time of gam-
etes at the PM, a hypothesis was proposed
whereby a SF acts as the trigger of oscillations
after fusion of the gametes (Swann and Lai
1997). Although this hypothesis was received
with skepticism, support for it grew steadily,
as injection of sperm extracts initiated oscilla-
tions in several mammalian and nonmamma-
lian species (Stricker 1997; Wu et al. 1997).
Furthermore, physiological support for this
concept was provided both when intracytoplas-
mic sperm injection into eggs (ICSI) resulted in
the birth of young (Palermo et al. 1992), and the
subsequent demonstration that ICSI initiated
fertilization-like oscillations in several mamma-
lian species (Tesarik and Testart 1994; Nakano
et al. 1997; Kurokawa and Fissore 2003; Malcuit
et al. 2006). Together, these studies consolidated
the concept of the SF as the initiator of oscilla-
tions in mammalian eggs, although identifica-
tion of the active principle would have to wait
for another decade.

Identification of PLCz

The search for the SF’s active component(s) was
the subject of intense interest and it was not
without some false starts. A turning point
came when studies using sea urchin egg extracts
and in vitro PLC assays revealed that cytosolic
preparations from mammalian sperm pos-
sessed high PLC activity, which was nearly twice
as high as the activity present in other tissues
(Parrington et al. 1999; Jones et al. 2000; Rice
et al. 2000). In addition, it was discovered that
the sperm’s PLC activity displayed high sensitiv-
ity to Ca2þ, meaning that it shows near maximal
activity in the presence of basal [Ca2þ] concen-
trations (Rice et al. 2000), which in most cells
are of �100 nM (Clapham 2007). This feature
made the putative SF a credible candidate to
trigger oscillations, because to attain high spe-
cific activity most PLCs require [Ca2þ] concen-
trations in excess of 1 mM (Rebecchi and
Pentyala 2000; Nomikos et al. 2005), concentra-
tions that are not compatible with MII arrest.
It was therefore not surprising that injection
of recombinant proteins representing most of
the known isoforms expressed in sperm (Choi
et al. 2001; Fukami et al. 2001) failed to initiate
oscillations in mouse eggs (Parrington et al.
2002), or if they did, they did so at nonphy-
siological concentrations (Mehlmann et al.
2001). Hence, it became evident that if a PLC
were to be the SF, it had to be a novel PLC.
Toward this end, the novel sperm-specific
PLCz (Saunders et al. 2002) was identified in a
PLC homology screen of mouse testis expressed
sequence tags. Data in the latter study and in
follow up reports provided strong evidence to
support the concept that PLCz is the pivotal,
and possibly exclusive, initiator of [Ca2þ]i oscil-
lations in mammals. Specifically, injection of
recombinant PLCz (Fujimoto et al. 2004; Kou-
chi et al. 2004) or PLCz cRNA evoked sperm-
like oscillations in mouse (Saunders et al.
2002), rat (Ito et al. 2008b), human (Rogers
et al. 2004), bovine (Malcuit et al. 2005; Ross
et al. 2008), porcine (Yoneda et al. 2006), and
equine (Bedford-Guaus et al. 2008) eggs. In
vitro PLC assays, using recombinant PLCz con-
firmed the enzyme’s high sensitivity to Ca2þ,
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which render it nearly fully active at basal
[Ca2þ]i concentrations (Kouchi et al. 2004).
Immunolocalization studies localized PLCz
to the postacrosomal region of mouse sperm
(Fujimoto et al. 2004) and to the equatorial
area of bull and human sperm (Yoon and Fis-
sore 2007; Grasa et al. 2008; Yoon et al. 2008),
regions that first come in contact with the
ooplasm following gamete fusion, respectively
(Sutovsky et al. 2003).

Recent evidence linking PLCz expression
and fertility further strengthened the role of
PLCz as the initiator of [Ca2þ]i oscillations in
mammals. One study examined the ability of
sperm from patients with repeated ICSI failure
to initiate [Ca2þ]i oscillations in mouse eggs.
The sperm from a few of these patients were
incapable of initiating [Ca2þ]i responses, and
examination of PLCz expression by immuno-
fluorescence and by Western blotting found
reduced/absent levels of the enzyme in these
sperm (Yoon et al. 2008). The results suggest
that the inability of these sperm to activate eggs
might be the main cause of their infertility.
Consistent with this notion, studies have shown
that the infertility of patients with globozoo-
spermia, an affliction where even after ICSI
most patients remain sterile, can be overcome
by ICSI followed by Ca2þ ionophore-aided egg
activation (Taylor et al. 2010; Heindryckx et al.
2005). A second study in patients with ICSI
failure found that, in addition to reduced expres-
sion of PLCz, a point mutation was identified
that compromises PLCz’s ability to initiate
[Ca2þ]i oscillations (Heytens et al. 2009). Col-
lectively, the evidence supporting PLCz as the
mammalian SF is compelling. Nevertheless,
questions remain regarding its expression dur-
ing spermatogenesis and storage in sperm, its
mechanism of release into the ooplasm, and
mechanism(s) of activation once in the egg.

Despite evidence that PLCz serves as the
principal trigger of oscillations in mammals,
research has unearthed species-specific differ-
ences that might prove useful in elucidating
how PLCz is regulated during fertilization. For
example, although mouse PLCz, which is the
most studied, accumulates into the nucleus fol-
lowing PN formation (Saunders et al. 2002;

Yoda et al. 2004), none of the other PLCz iso-
forms tested display this localization despite
sharing a nuclear localization signal (Cooney
et al.; Ito et al. 2008b). There seems also to be
significant differences in specific activity. For
instance, based on the concentrations of cRNAs
required to initiate oscillations, human PLCz
seems �40-fold more active than mouse
PLCz, which itself is significantly more active
than the rat enzyme (Cox et al. 2002; Rogers
et al. 2004; Ito et al. 2008b). Although the role
of these species-specific variations has not
been explored carefully, it is tempting to specu-
late that they are the result of adaptations to pro-
mote the optimal activation signal. To this end,
it is revealing that the species with the weakest
PLCz, the rat, has the easiest oocytes to activate
(Zernicka-Goetz 1991; Ito et al. 2007). Future
studies should examine whether an inverse
association exists between expression levels/
activity of PLCz in sperm and IP3R1 sensitiv-
ity/strength of the CSF-arresting machinery in
eggs. Similarly, future studies should elucidate
the molecular changes that underlie the differ-
ences in PLCz activity among species. For exam-
ple, despite missing the pleckstrin homology
(PH) domain, PLCz shows the modular organ-
ization characteristic of other PLCs, which con-
sists of 4 EF hand Ca2þ-binding domains, X and
Y catalytic domains, and the Ca2þ-dependent
phospholipid-binding C2 domain (Rebecchi
and Pentyala 2000). The EF-hand domains,
and especially the EF3-hand domain, have
been suggested to confer the high Ca2þ sensitiv-
ity of PLCz through in vitro studies (Kouchi
et al. 2005; Nomikos et al. 2005); whether
sequence differences in this or other EF-hand
domains underlie PLCz species-specific differ-
ences should be examined.

CONCLUSIONS

The study of the Ca2þmechanisms that underlie
fertilization in mammals has resulted in impor-
tant contributions to the Ca2þ signaling field in
general and to the field of fertilization in partic-
ular. For example, the indispensable role of IP3-

R1-mediated Ca2þ release in regulating cellular
functions was unequivocally shown in mouse
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fertilization (Miyazaki et al. 1992). Likewise,
the discovery of the SF’s active component,
PLCz (Saunders et al. 2002), not only provided
evidence for a novel way of activating Ca2þ

signaling in a host cell, but also added a new
member with unique properties to the all im-
portant family of PLC enzymes. Importantly,
and despite progress in the role of these two
molecules in fertilization, we are still unaware
of their fine regulatory mechanisms. For exam-
ple, IP3R1 function is greatly optimized during
oocyte maturation, but the precise underlying
molecular mechanisms responsible for these
changes remain undetermined. Similarly, how
the seemingly constitutive activity of PLCz
is provisionally restrained in the sperm and
how its expression is regulated during sperma-
togenesis are questions that need addressing.
Lastly, although [Ca2þ]i oscillations trigger
mammalian development, we remain unin-
formed of the regulation of SERCA, which
recycles Ca2þ into the ER, and of the molecules
that underpin Ca2þ influx, which sustain the
oscillations. Identification and elucidation of
these regulatory mechanisms in oocytes will
deepen our understating of fertilization, infor-
mation that could be then used in the clinic
for the diagnosis of infertility, and to enhance
developmental competence of embryos gener-
ated by a variety of Assisted Reproductive Tech-
nology procedures.
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