
Choice and Efficiency

1. The decision maker

We focus on how individuals make decisions. In doing so, we will set a definition of rationality.

Our main character is the individual decision maker. The decision maker does nothing but

choosing an element from a given set.

Our assumptions:

1. the decision maker has well defined preferences over a choice set;

2. the decision maker is rational.

Thanks to these assumptions, we will prove that the decision maker’s preferences can be

represented by a utility function and that the decision maker chooses her preferred element

in the choice set as if she were maximizing her utility function in the choice set.

2. The choice set

The choice set is represented by X: an arbitrary set of objects such as a list of consumption

bundles. Thus we could have:

X = {nuts, berries, shoes, shirt}

or, more abstractly:

X = {a, x, y, w, z}

3. Preferences

Preferences are represented by a preference relation, denoted by � (please, do note that �
is not ≥). This preference relation is what the decision maker uses to compare any pair of

alternatives x, y ∈ X.

The expression

x � y

is read as “x is at least as good as y” or “x is weakly preferred to y” for our decision maker.

“Weakly” means that either the decision maker likes x better than y or else she is indifferent

between the two.

Two further relations are then derived: the strict preference relation and the indifference

relation.

The strict preference relation � is so defined:

x � y iff x � y but not y � x.
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On the other hand, the indifference relation is defined as:

x ∼ y iff x � y and y � x.

4. Rationality

We identify “rationality” with two assumptions on the preference relation: completeness and

transitivity.

Definition 1 We will say that � is complete iff ∀x, ∀y ∈ X you either have x � y or y � x
or both.

So, completeness means that any and every two elements of the choice set can be compared.

Definition 2 We will say that � is transitive iff ∀x, ∀y,∀z ∈ X, if x � y and y � z then

x � z.

5. Representing utility

The very fact that � is complete and transitive allows us to represent � by a utility function.

Definition 3 A function u : X → R is a utility function representing � if ∀x, ∀y ∈ X we

have:

x � y ⇔ u(x) ≥ u(y).

The following representation theorem is a cornerstone for economic analysis. We will

limit ourselves to the statement (proving it is not that hard, though! Give it a try!)

Theorem 1 A preference relation � can be represented by a utility function iff it is complete

and transitive.

6. Choice

A rational agent chooses then the element x of the choice set X to which is associated the

highest utility u(x).

Formally, a rational agent choice problem is represented in these terms:

maxx∈X u(x).

The very core of the matter is the decision maker being forced to face some constraints

(we are talking “economics” after all!!). Under this perspective, the consumer problem is the

classic example.

Le m be a fixed amount of money available for the consumer. We then let p = (p1, . . . , pk)

be a vector of prices for 1, . . . , k goods. Let then the set of affordable objects for the consumer

be:

B = {x ∈ X : p1x1 + . . .+ pkxk ≤ m}

B is called the budget set and p1x1 + . . .+ pkxk ≤ m is called the budget constraint.

In vector notation, we can write px ≤ m and have the consumer problem written as:

choose x to maximize u(x) subject to x ∈ B
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or equivalently:

choose x to maximize u(x) subject to x ∈ X and px ≤ m

or as we usually do as:

maxx∈B u(x)

7. The budget constraint

Let us consider an economy with two goods: X = R2
+. We shall call (x1, x2) a consumption

bundle of x1 units of good 1 and x2 units of good 2. Any such bundle is thus a point on a

two-dimensional graph.

Prices of the goods p1 and 2 are known and given, the consumer is a price taker. Let m

be the consumer’s income. The consumer’s budget constraint is thus: p1x1 + p2x2 ≤ m.

The budget set is the set of all bundles that are affordable at a given price and income:

B = {x ∈ X : p1x1 + p2x2 ≤ m}.

The budget line is the set of bundles such that:

p1x1 + p2x2 = m

This can also be written as:

x2 =
p1
p2
x1 +

m

p2
.

This is a linear function with vertical intercept m/p2, horizontal intercept m/p1 and a slope

of −p1/p2.

The slope of the budget line measures the rate at which the market is willing to exchange

good 1 for good 2. So, the slope measures the opportunity cost of consuming good 1: the

consumer has an alternative opportunity to consuming 1 unit of good 1, consisting in selling

the unit of good 1, for an amount equal to p1, and then using the proceeds to buy good 2 –

that is p1

p2
units of good 2.

We also know that when prices or income change, then the budget line moves. We won’t

expand on this.

8. Indifference curves

A useful graphical description of preferences exploits a construction known as indifference

curves.

Indifference curves are level curves, that is, they represent the set of (x1;x2) for which

the utility is constant at some level, say U as in the following figure:

We make two general assumptions on preference relations. The first is monotonicity (i.e.

“more is better”).

Definition 4 We typically assume that more is better when consider goods, not bads. More

precisely, consider (x1, x2) as a bundle of goods and let (x′1, x
′
2) be any other bundle with at

least as much of both goods and more of one. That is, x′1 ≥ x1 and x′2 ≥ x2 with at least one

strict inequality. (Strict) monotonicity of preferences requires that:

if (x′1, x
′
2) > (x1, x2) then (x′1, x

′
2) � (x1, x2)
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Figure 1: Indifference curves and the MRS

Thus, (strict) monotonic preferences imply that more of (resp. less) of both goods is a better

(resp. worse) bundle. Monotonicity of preferences implies that the utility function which

represents preferences is monotonic increasing in both its arguments:

∂u(x1, x2)

∂x1
,
∂u(x1, x2)

∂x2
> 0; for any (x1, x2) ∈ X

Strict monotonicity also implies that indifference curves have a negative slope:

−MRS(x1, x2) < 0

Of course, it goes without saying that higher level indifference curves correspond to higher

utility levels.

Our second assumption will be convexity. We know that a set is convex if with x, y ∈ X
and α ∈ [0, 1] then αx+ (1− α)y ∈ X.

That is a set is convex if it contains the entire segment joining any two of its elements.

Convexity of preferences requires that the set of weakly preferred allocations to any given

Figure 2: Convex and non convex sets

allocation is convex. Formally, for any (x1, x2) ∈ X; the set {(y1, y2) ∈ X : (y1, y2) � (x1, x2)}
is convex. At the very same time, taking two arbitrary bundles on the same indifference curve,

(x1, x2) and (x′1, x
′
2) by convexity the bundle

(
x1
x2

)
+ (1− α)

(
x′1
x′2

)
is preferred to both

(x1, x2) and (x′1, x
′
2). Convexity of preferences implies that the utility function representing

preferences is concave and that indifference curves are convex.

4



9. The consumer problem

We can now restrict ourselves to Cobb-Douglas preferences and solve the consumer problem:

max
x∈X

u((x1, x2)) s.t. p1x1 + p2x2 = m

under the assumptions that the preference relation represented by u(x1, x2) are monotonic

and convex.

Painted with an extremely broad brush: a bundle (x∗1, x
∗
2) is an optimal choice for the

consumer if the set of bundles that the consumer prefers to (x∗1, x
∗
2) (i.e. the set of bundles

above the indifference curve through (x∗1, x
∗
2)) has an empty intersection with the bundles

she can afford (i.e. the bundles beneath her budget line). It then follows that at (x∗1, x
∗
2) the

indifference curve is tangent to the budget line:

MRS(x∗1, x
∗
2) =

αx∗2
βx∗1

= −p1
p2

and at (x∗1, x
∗
2) the budget constraint must be satisfied:

p1x
∗
1 + p2x

∗
2 = m

Now that we have these two equations in two unknowns that can be solved for the optimal

bundle, we can derive the demand function for good 1:

x∗1 =
α

α+ β

m

p1

and for good 2:

x∗2 =
α

α+ β

m

p2

10. Equilibrium and efficiency

We investigate the fundamental economic problem of allocation and price determination in a

very simple economy. Our aim is to describe what outcomes might arise by giving individuals

the opportunity to voluntarily exchange goods. Thus, we will follow two simple principles:

(i) Rationality - individuals choose the best patterns of consumption that are affordable for

them, and (ii) Equilibrium - prices adjust such that the amount that people demand of some

good is equal to the amount that is supplied. We will determine equilibrium prices, equating

demand and supply. We will show that these prices solve the allocation problem efficiently.

We shall consider a pure exchange economy: that is, an economy with no production, in

which consumers have fixed endowments of goods. In our economy, markets are competitive:

that is, consumers take prices as given, independently of their trading choices. We say therefore

that consumers are price takers. Furthermore, we assume consumers are rational: that is,

they choose the consumption bundle which maximizes their utility (and, as you know, they

have a utility which represents their preferences to maximize if and only if they are rational).

These assumptions are fundamental in our analysis. We assume that the economy is a 2x2

economy: that is, it is composed of two consumers who consume two types of goods.

Let {1, 2} denote the set of consumption goods. Let instead {A,B} denote the set of

consumers.

ConsumerA and consumerB initial endowments are denoted, respectively,wA = (wA
1 , w

A
2 )

and wB = (wB
1 , w

B
2 ).
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Similarly, xA = (xA1 , x
A
2 ) and xB = (xB1 , x

B
2 ) will denote consumer A’s and consumer B’s

consumption bundles.

Consumer As and consumer B’s preferences are represented, respectively, by complete

and transitive preference orderings �A and �B defined on R2
+ or, which is equivalent, by

utility functions uA(x1, x2) and uB(x1, x2).

Definition 5 An allocation is a pair of bundles xA and xB. An allocation is feasible if:

xA1 + xB1 = wA
1 + wB

1

and

xA2 + xB2 = wA
2 + wB

2

We now need a notion of efficiency in order to pairwise compare different allocations.

Definition 6 A feasible allocation xA + xB is Pareto efficient if there is no other feasible

allocation yA + yB such that yA � xA and yB � xB with at least one �.

That is, an allocation is Pareto efficient if it is feasible and there is no other feasible

allocation for which one consumer is at least as well off and the other consumer is strictly

better off. This implies that at a Pareto efficient allocation (i) there is no way to make both

consumers strictly better or, (ii) all of the gains from trade have been exhausted, that is,

there are no mutually advantageous trades to be made.

This can geometrically be easily seen in a graphical representation of the Pareto Frontier.

Figure 3: The Pareto Possibility Frontier

11. The Edgeworth Box

The Edgeworth Box is a simple way to illustrate some key aspects of a pure exchange

economy.

Let us consider a 2x2 economy, let the decision makers be {Adamo,Eva} and finally let

{Beer,Wine} be the set of goods.

We first represent a cartesian space for Adam (henceforth A), let its origin be OA.

We then represent Eve’s space in the very same way.
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Figure 4: Adam’s coordinates

Figure 5: Eve’s coordinates

Finally, we flip Eve’s coordinates so that their origin lies orthogonally w.r.t. Adam’s and

we get:

Note, that every point in the box so obtained – e.g. point x – corresponds to an allocation

of both goods to both agents. Also try and move the point within the box: notice that each

movement corresponds to some trade between the two agents (Fig.6).

We can then have some indifference curves drawn for the two (note: arrows indicate

directions they have to follow in order to improve their welfare i.e. climbing to higher level

indifference curves). (Fig.7)

Let us now consider the following graph (Fig.8)

AG is Adam’s indifference curve that intersects Eve’s indifference curve EG in point g.

Question: can we imagine some trade corresponding to A improving his situation and to E

not worsening hers? We can see from the figure that the answer is a bold yes e.g. in point h.

As a matter of fact, i) A is better off as he moves from his curve AG to his curve AH which

confers him a higher level of utility. Simultaneously, in h Eve is not worse off as she remains

on the same indifference curve EG.

• Question: can push this process any ffurther (i.e making A better off while not worsening

E)?

• Answer: we can do that as long as A climbs to higher level indifference curves while,

at the same time, intersecting EG.

• Note: this will be possible until one reaches point p. From this point on making A

better off amounts to worsening E’s position. Point p is a Pareto efficient allocation.

Confront it with our previous definition of Pareto efficiency: no one is worse off + at

least one is better off. That is for every agent � holds and � holds for at least one.
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Figure 6: The Edgeworth box.

Figure 7: Indifference curves in the Edgeworth box.

Another question: can we imagine a simultaneous improvement for both agents at the

same time? Have a look at Fig. 9.

• In p2, A is at a higher level of utility than he is in g as he now is on curve Ap2 rather

than in AG

• same holds for E as Ep2 is higher than Eg.

• note that in this case, � holds for A as it holds for E. That is: p2 �A g and p2 �E g.

• note that in p2 it holds true that Ap2 and Ep2 are tangent and thus have the same

slope. This in turn means that A’s marginal rate of substitution and E’s marginal rate

of substitution are equal. We can thus conclude that Pareto efficiency requires MRSs

being equal and a that a tangency condition be met.
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Figure 8: Improving Adam

Figure 9: Improving both agents

9


