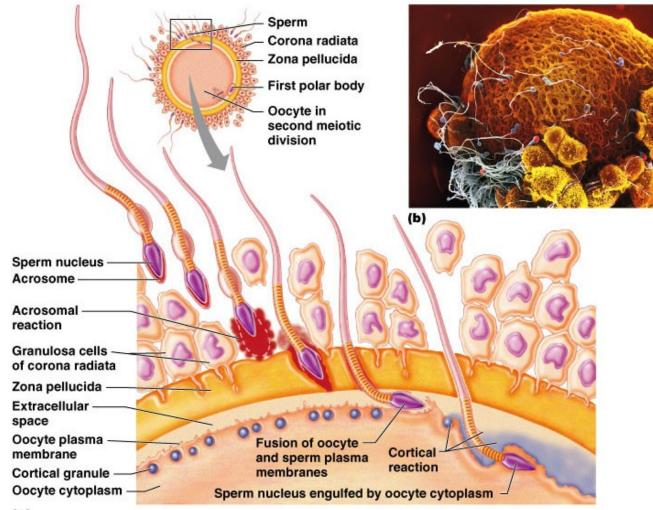
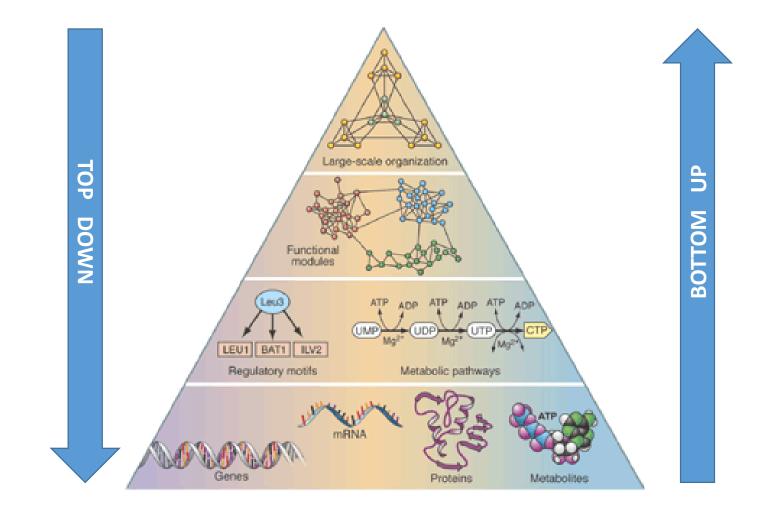

Biological networks and reproductive biology

Fertilization is a complex event

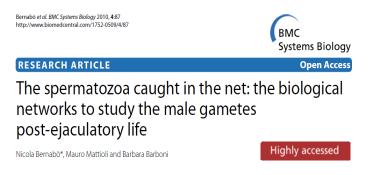

capacitation

Copyright © 2006 Nature Publishing Group Nature Reviews | Molecular Cell Biology

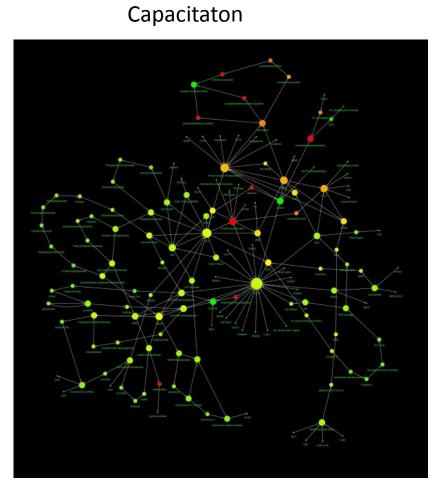
Acrosome reaction


(a)

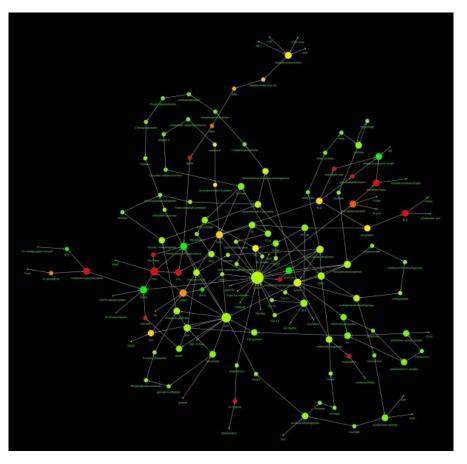
Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings.


fertilization

Systems biology and reproduction



The model



int J and Generale Σ - 47 00, 00 📳 Formato 👻 🥥 🗸 Numeri Celle Modifica A75 ∫x H+i A В PLD1 att Cytoscape Desktop (Session: prteine.cys MAPK File Edit View Select Layout Plugins Help PLD1 🗁 🔚 🔍 🔍 🔍 📾 📷 🔯 🛃 🧏 🙀 Search: [choline phosphatidic acid ontrol Pane Eoglio Network VizMapper™ Editor Filt... ∢ 3-actin G-actin poly Nodes Edges Network G-actin polvm G-actin polyme att G-act 140% 😑 tesi attili Data Panel 🗏 🗋 🔛 E 📓 📋 f(w) 🗁 🎆 < 7 🧕 🔄 💻 🔒 🙀 12.5 Oytoscape Desktop . 🔂 Mic

The networks

Acrosome reaction

Networks topology

Table 1: Main topological parameters of capacitation and AR networks

N°nodes

N°edges

Diameter

Clustering coefficient

Averaged n°neighbours

Char. path length

Table 2: Result of power law fitting of IN and OUT capacitation and AR networks

	capac	itation	Α	R
	in	out	in	out
r	0.992	0.997	0.992	0.989
R ²	0.897	0.837	0.906	0.823
b	-1.547	-2.046	-1.657	-2.303

The number of nodes represent the total number of molecules involved, the number of edges represents the total number of interaction found, the clustering coefficient is calculated as CI = 2n/k(k-1), where *n*I is the number of links connecting the *k*I neighbours of node I to each other, the network diameter is the largest distance between two nodes, the Averaged n°neighbours represent the mean number of connection of each node, the Char. path length gives the expected distance between two connected nodes.

capacitation

146

197

0.029

20

2.667

6.606

Table 3: Most connected nodes (the hubs) of capacitation and AR networks

Network	Node	Number of links
capacitation	[Ca ²⁺] _i	25
capacitation	ATP	14
capacitation	Tyr phosphorylation	13
capacitation	РКА	9
capacitation	ADP	8
capacitation	PLD1	8
AR	[Ca ²⁺] _i	23
AR	АТР	13

AR

141

191

0.026

20

2.695

6.736

Hubs removal

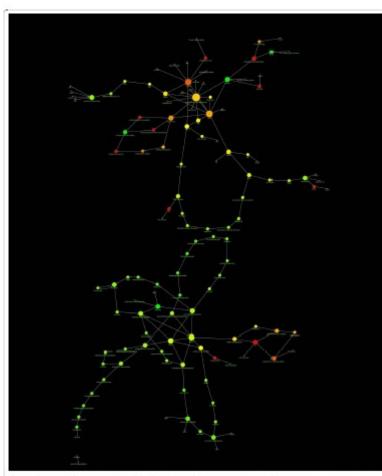


Figure 4 Diagram showing the effect of the elimination from capacitation network of the most linked nodes. The elimination from capacitation network of the most linked nodes (Ca²⁺) and ATP-ADP, caused the collapse of network sinucture.

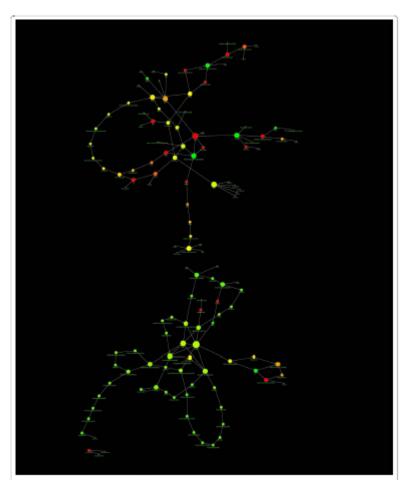


Figure 5 Diagram showing the effect of the elimination from AR network of the most linked nodes. The elimination from AR network of the most linked nodes ([Car+1] and ATP-ADP) caused the collapse of network structure.

Common elements

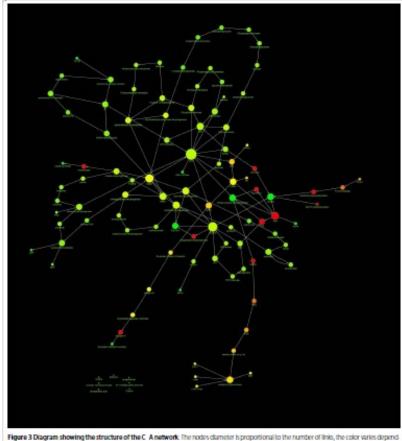


Figure 3 Diagram showing the structure of the C. A network. The rocks carriest is proportional to the number of this, the click of varies deprising on the network centrality. The direction of arrows represents the direction of the interaction (from the source to the larget). The spatial network arrangement was obtained by using the Cytoscape Spring-embedded layout (see the too for explanation).

Table 4: Main topological parameters and the most connected nodes of C A network

	C A
N°nodes	109
N°edges	143
Clustering coefficient	0.036
Diameter	20
Averaged n°neighbours	2.606
Char. path length	6.957
IN degree distribution	b = -1.829
	r = 0.997 $R^2 = 0.948$
OUT degree distribution	b = -2.240 r = 0.992 R ² = 0.894
Hub (n°edges)	ATP (13); Ca ²⁺ (12)

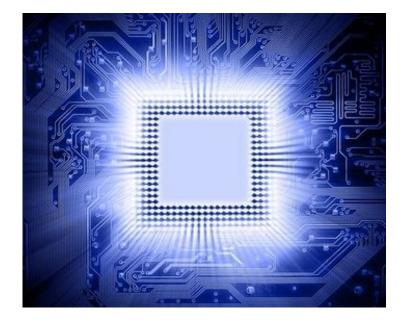
The number of nodes represent the total number of molecules involved, the number of edges represents the total number of interaction found, the clustering coefficient is calculated as CI = 2nl/k(k-1), where *n*l is the number of links connecting the *k*l neighbours of node I to each other, the network diameter is the largest distance between two nodes, the Averaged n°neighbours represent the mean number of connection of each node, the Char. path length gives the expected distance between two connected nodes.

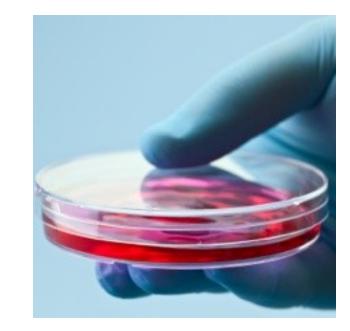
Consequently ...

- It is possible to represent the biological events involved in reproduction as networks models;
- They are scale free networks;
- The have a ultra small-world topology;
- It is possible to take important inerences.

Experimental validation of the model

Bernabò et al. BMC Systems Biology 2011, 5:47 http://www.biomedcentral.com/1752-0509/5/47


вмс Systems Biology


RESEARCH ARTICLE

Open Access The role of actin in capacitation-related signaling:

an in silico and in vitro study

Nicola Bernabò^{*}, Paolo Berardinelli, Annunziata Mauro, Valentina Russo, Pia Lucidi, Mauro Mattioli and Barbara Barboni

Organization of signalig systems

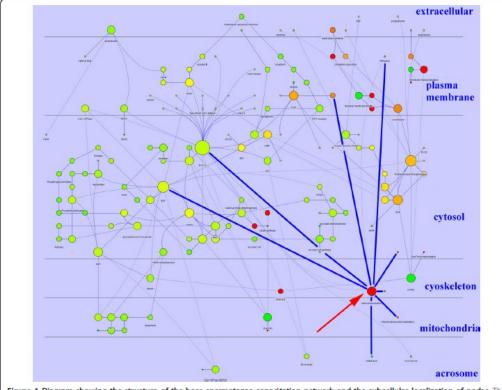


Figure 1 Diagram showing the structure of the boar spermatozoa capacitation network and the subcellular localization of nodes. The node size was proportional to the connection number and the node color gradient was dependent from the closeness centrality. This parameter is computed as: $C_c(n) = 1/avg(L(n,m))$, were L (n,m) is the length of the shortest path between two nodes *n* and *m*. The closeness centrality of each node ranges from 0 (red) to 1 (green) and it is a measure of how fast the information spreads from a given node to the other nodes. The actn polymerization node is indicated by the red arrow, its links by blue line. All the nodes were localized in their specific subcellular domain (Cerebral V.2).

Table 2 Most connected	nodes	(the	hubs)	of	capacitation
network					

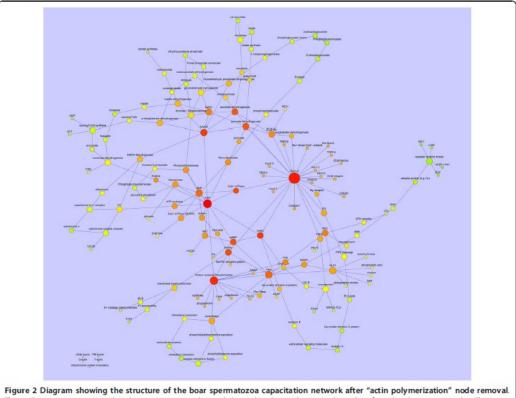
Node	Number of links
[Ca ²⁺] _i	28
ATP	15
Tyr phosphorylation	13
PKA	9
ADP	8
PLD1	8
NADH	8
Actin polymerization	8

networks topology

Table 1 Main topological parameters of capacitation network

Parameter	Value
N° nodes	153
N° edges	204
Clustering coefficient	0.056
Diameter	12
Averaged n° neighbours	2.654
Char. path length	4.995

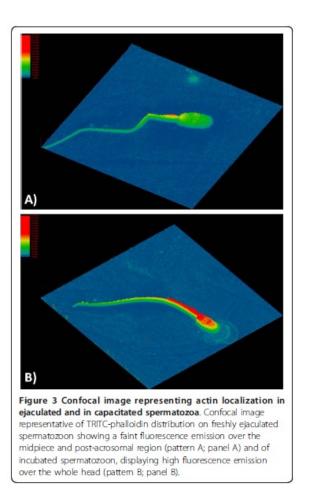
The number of nodes represent the total number of molecules involved, the number of edges represents the total number of interaction found, the clustering coefficient is calculated as CI = 2nl/k(k-1), where *n*I is the number of links connecting the *k*I neighbours of node I to each other, the network diameter is the largest distance between two nodes, the Averaged n° neighbours represent the mean number of connection of each node, the Char. path length gives the expected distance between two connected nodes.

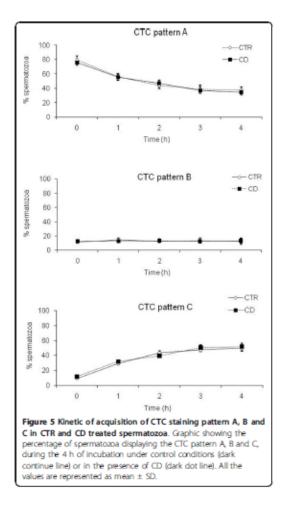

Table 3 Main topological parameters of capacitation network after "actin polymerization" node removal

Parameter	Value
N° nodes	152
N° edges	196
Clustering coefficient	0.056
Diameter	12
Averaged n° neighbours	2.566
Char. path length	6.071
Degree distribution	b = -1.563
	$r = 0.809 R^2 = 0.898$

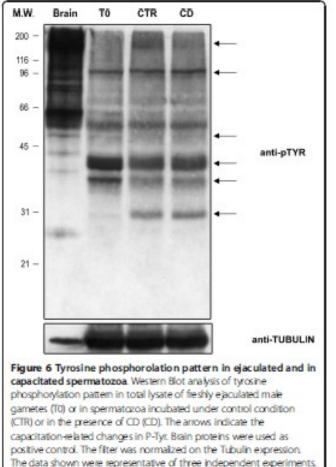
The number of nodes represent the total number of molecules involved, the number of edges represents the total number of interaction found, the clustering coefficient is calculated as CI = 2nl/k(k-1), where *n* I is the number of links connecting the *kl* neighbours of node I to each other, the network diameter is the largest distance between two nodes, the Averaged n° neighbours represent the mean number of connection of each node, the Char, path length gives the expected distance between two connected nodes.

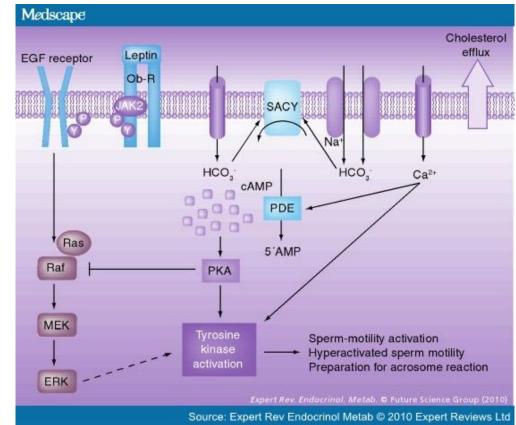
b = -1.578

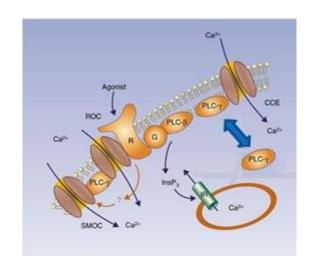

Membrane fusion is impossible



The node size was proportional to the connection number and the node color gradient was dependent from the closeness centrality. This parameter is computed as: $C_c(n) = 1/avg(L(n,m))$, were L (n,m) is the length of the shortest path between two nodes n and m. The closeness centrality of each node ranges from 0 (red) to 1 (green) and it is a measure of how fast the information spreads from a given node to the other nodes. The spatial network arrangement was obtained by using the Cytoscape Spring-embedded Layout (see the text for explanation).

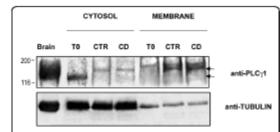
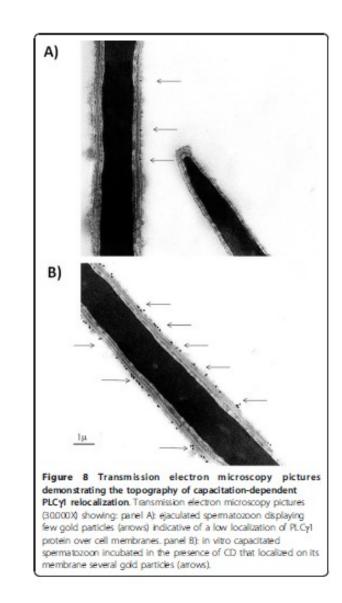

F-actin

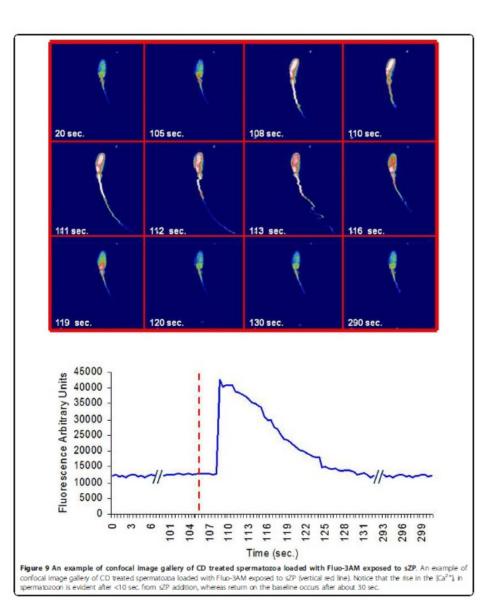

CTC

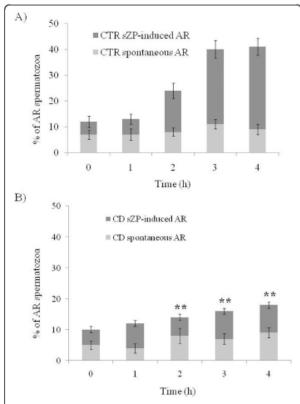


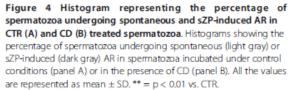
protein tyrosine phosphorylation

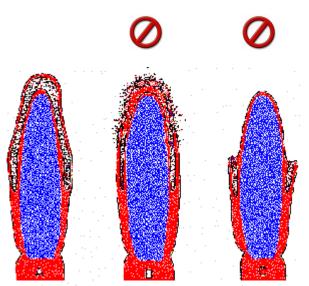
PLC-γ1




Figure 7 Capacitation-dependent PLCy1 relocalization. Western Biot analysis of PLCy1 localization in cytosolic and membrane fractions of fieshly ejaculated male gametes (T0) or in spermatozoa incubated under control condition (CTR) or in the presence of CD (CD). The data showing the capacitation-dependent translocation of PLC-y1 (arrows) from cytosol to membrane. Brain proteins were used as positive control. The filter was normalized on Tubulin expression. The data shown were representative of four independent experiments.



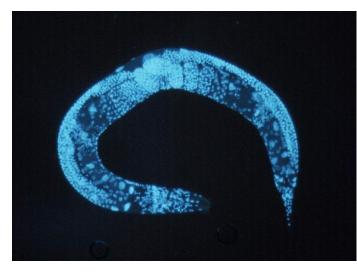


Acrosome reaction

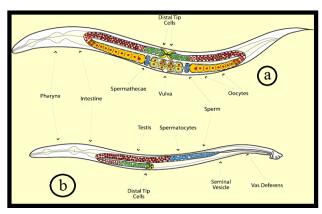
In conclusion

- The model has been validated;
- A new role of actin during sperm capacitation has been proposed.

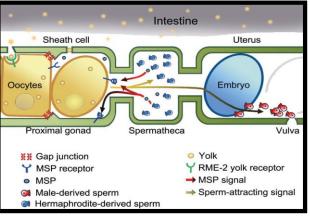
Evolution of the system

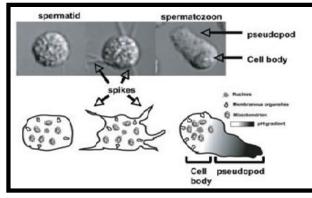

Research Article

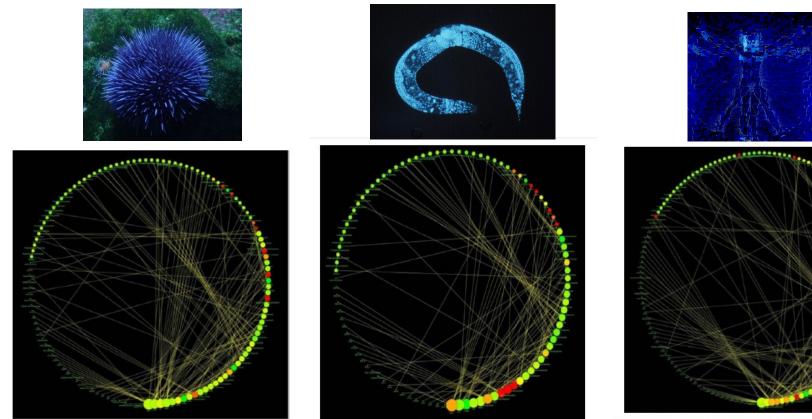
Benabò et al., J Bioengineer & Biomedical Science


Open Access

Signaling Strategy in Spermatozoa Activation of Sea Urchin, *C. elegans* and Human: Three Different Players for the Same Melody Nicola Bernabö', Ilaria Saponaro, Mauro Mattioli and Barbara Barboni Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy







	Sea urchin	C. elegans	Human
Symmetry	Fivefold	Bilateral	Bilateral
Sexes	Male/Female	Hermaphrodite/ Male	Male/Female
Fertilization	External	Internal	Internal
Sperm motility	Flagellum	Amoeboid	Flagellum
Acrosome reaction	Yes	No	Yes
Membrane remodeling	No	Yes	Yes
Cytoskeleton remodeling	Actin	MSP	Actin
Time for sperm activation	Seconds	Days	Hours to days

Table 5: Main biological characteristics of reproduction and spermatozoa in sea urchin, *C. elegans* and Human.

The nodes diameter is proportional to the number of links, the color varies The nodes diameter is proportional to the number of links, the color varies depending on the closeness centrality (see text for explanation). The networks depending on the closeness centrality (see text for explanation). The networks were spatially represented using the Cytoscape Degree Sorted Circle Layout: were spatially represented using the Cytoscape Degree Sorted Circle Layout: all nodes woth the same number of links are located together around the circle all nodes with the same number of links are located together around the circle (see Cytoscape's User Manual).

Figure 1: Diagram showing the sea urchin spermatozoa activation network. Figure 2: Diagram showing the C. elegans spermatozoa activation network.

(see Cytoscape User Manual).

The nodes diameter is proportional to the number of links, the color varies depending on the closeness centrality (see text for explanation). The networks were spatially represented using the Cytoscape Degree Sorted Circle Layout: all nodes with the same number of links are located together around the circle (see Cytoscape User Manual).

Figure 3: Diagram showing the Human spermatozoa activation network.

	Sea urchin	C. elegans	Human
N° nodes	127	100	151
N° edges	175	132	202
Clustering coef- ficient	0.023	0.032	0.028
Diameter	23	23	20
Avg. n° neighbours	2.740	2.620	2.662
Char. path length	8.128	7.816	6.546

	Sea urchin		C. elegans		Human	
	IN	OUT	IN	OUT	IN	OUT
R	0.998	0.967	0.992	0.971	0.988	0.997
R ²	0.748	0.924	0.866	0.884	0.890	0.828
b	-1.589	-2.421	-2.067	-2.127	-1.542	-1.993

Table 2: Results of power law fitting of IN and OUT sea urchin, *C. elegans* and Human spermatozoa activation networks.

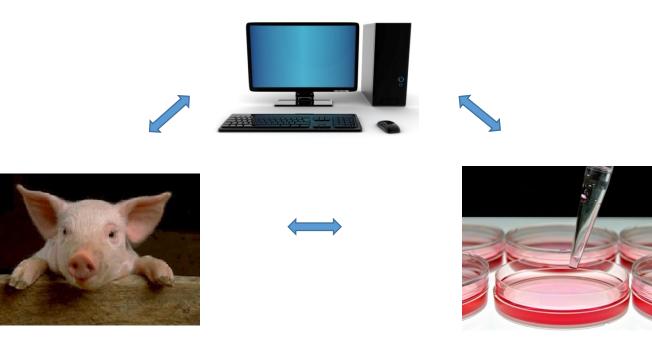
The number of nodes represent the total number of molecules involved; the number of edges represents the total number of interactions; the clustering coefficient is calculated as CI=2nl/k(k-1), where *n* is the number of links connecting the kl neighbours of node I to each other; the network diameter is the largest distance between two nodes; the Averaged n° neighbours represents the mean number of connections of each node; the Char. path length gives the expected distance between two connected nodes.

Table 1: Main topological parameters of Sea urchin, C. elegans and Human spermatozoa activation networks.

Sea	n urchin	C. elegan	Human		
Node	N° of links	Node	N° of links	Node	N° of links
[Ca2*]	19	[Ca ²⁺]	10	[Ca2+]	25
[H*],	14	[H*],	9	Tyr phosph.	13
ATP	9	ATP	7	ATP	15
cGMP	15	Motility	8	PKA	9
CAMP	13	Vesicle fusion	7		
		NADH	7		
		NAD*	6		
		Pseudopod exten- sion	6		

Table 3: Most connected nodes (the hubs) of sea urchin, C. elegans and Human spermatozoa activation networks.

In conclusion


• Different organisms share the same topology

Sptz as model

- Disposable cells;
- Transcriprionally silent;
- IVF to evaluate their function.

Possible applications

- Contraception;
- unexplained infertility;
- Personalized medicine;
- in vivo in vitro in silico systems

						Topolog	gical parameters			
		No. nodes	No. edges	CC	Diameter	Avg. no. neighbours	Char. path length	Nodes degree exponent (y)	r	R^2
	SU	130	179	0.074	13	2.738	5.205	-1.418	0.716	0.825
SAN	CE	102	132	0.063	15	2.569	5.865	-1.572	0.680	0.815
	Hu	151	202	0.057	12	2.662	5.014	-1.588	0.817	0.852
	MC	134	139	0	12	2.075	5.59	-1.579	0.958	0.731
	NRC	238	356	0.059	11	2.798	5.465	-1.294	0.977	0.776
	VP	143	158	0	15	2.14	9.928	-2.015	0.964	0.857
	INS	346	428	0.02	18	2.416	6.435	-1.428	0.993	0.868
OSN	p53	802	917	0.002	16	2.217	6.044	-1.464	0.907	0.748
USIN	pRb	291	323	0	15	2.151	6.814	-1.782	0.974	0.848
	ATP	186	210	0.033	12	2.183	6.83	-1.532	0.983	0.841
	GLU	260	346	0.025	17	2.723	6.502	-2.127	0.795	0.842
	c-Kit	248	311	0	27	2.177	9.035	-1.799	0.677	0.852
	CC	125	126	0	12	2.016	5.781	-1.590	0.978	0.934
	SFN	130	130	0.004	10	2.000	4.857	-1.598	0.991	0.854

Notes: The number of nodes represents the total number of molecules involved, the number of edges represents the total number of interaction found, the Clustering Coefficient (CC) is calculated as CI = 2nI/k(k - 1), where nI is the number of links connecting the kI neighbours of node I to each other, the network diameter is the largest distance between two nodes, the averaged no. neighbours represent the mean number of connection of each node, the Char. path length gives the expected distance between two connected nodes, node degree exponent ($-\gamma$) and r represents the exponent and the correlation coefficient of power law equation of node distribution, respectively. SAN = sperm activation networks; SU = sea urchin; CE = *C. ele gans*; Hu = human; OSN = other signalling networks; MC = smooth and striated muscular contraction; NRC = 6 neurotransmitters release cycle; VP = visual phototransduction (rods); INS = insulin signalling pathway; p53 = p53 pathway; pRb = regulation of retinoblastoma protein; ATP = mitochondrial ATP metabolism; GLU = glucose metabolism; c-Kit = signalling events mediated by stem cell factor receptor c-Kit; CIRC = circadian clock; SFN = randomly computer generated scale free network.