

Biotechnology of Reproduction

UNIVERSITY of TERAMO

MEIOTIC MATURATION

Prof. Luisa Gioia

OOCYTE MEIOSIS

Concerning MEIOTIC MATURATION, germ cells enter the first stage of meiosis (PROFASE I), progress through the initial sub-stages (leptotene and zygotene) and then arrest at late pachitene o more frequently at diplotene stage.

In fully grown oocyte, which is in a resting condition, the large vescicular nucleus is referred to as a dictyate nucleus or GERMINAL VESICLE (GV), and it usually contains a cospicuous nucleolus

The first prophase is the longest stage of meiosis and it consists of several sub-stages corresponding to different organization of the germinal material.

During prophase I, CROSSING-OVER occurs, which is a crucial process that ensures the genetic variability to gametes

The meiotic cell division **During PROPHASE I,** maternal paternal **CROSSING OVER occurs** chromosome A chromosome A between the chromatids of homologous chromosomes Fase S **DNA** replication sister chromatids - synapsis of homologous chromosomes - crossing over Crossing over

HOMOLOGOUS RECOMBINATION

Chiasmata allow the crossing over of genetic material during prophase I of meiosis

The chromosomes are cut and resealed at points called chiasmata (singular chiasma) so that lenghts of maternal chromosomes are transferred to a maternal one and vice versa.

The end result of meiosis is that the gametes contain chromosomes that are neither completely paternal nor completely maternal but are **recombination** of the two

GAMETES

SEXUAL REPRODUCTION

BIOLOGICAL ADVANTAGE:

it allows organisms to possess a random selection of the genes from their ancestors.

Evolution by natural selection of the individual possessing the better genes.

Without crossing over this could not happen!

IMMATURE OOCYTE

In immature fully grown oocyte, DNA replication as well as crossing-over have already occurred

Experimental evidence of meiotic competence

- In the mammalian system, isolated fully grown oocytes undergo SPONTANEOUS MATURATION in vitro
- (Pincus and Enzmann, 1935)

Follicle cells continuosly send inhibitory factors to the GV oocyte, thereby causing its meiotic arrest

THE OOCYTE MATURATION

What triggers the process of oocyte maturation?

OOCYTE MATURATION

-Final phase of follicologenesis

The fate of most germ cells is degeneration but a small proportion will progress though the steps of ovarian follicologenesis.

Only when included within a well-developed antral follicle * (named mature follicle or Graafian follicole) does liberation of an oocyte from the ovary at OVULATION become a possibility

Final phases of follicologenesis/
oogenesis can be reached only after PUBERTY, when in the ovary fully developed follicles* (mature follicles/Graafian follicles) can be observed.

The antral follicles stage is regulated by gonadotropins (LH/FSH)

Only in the final stage of pre-ovulatory maturation of a follicle is meiotic arrest in the primary oocyte overcome to permit completion of the first meiotic division and formation of a secondary oocyte with first polar body (PB) by the time of ovulation

THE OOCYTE MATURATION

Specific **responses** to the pre-ovulatory surge of gonadotrophic hormones **are noted in both the oocyte and its surrounding follicle cells.**

> LH does not act directly on the oocyte

Prof. Luisa Gioia The Oocyte Maturation

Mucification of the cumulus mass within pre-ovulatory follicles is represented by deposition of an extracellular matrix that is sensitive to the action of hyaluronidase (Schuetz and Schwartz, 1979,; Eppig, 1980) being rich in hyaluronic acid. Hyaluronic acid is the major structural macromolecule of the ECM.

repeated disaccharide

Hyaluronic acid is the major structural macromolecule of the ECM

It is a large polyanionic polymer belonging to the family of Glicosaminoglicane (GAG), it is highly hydrophilic and thus able to attract water and expand as a coil, hence pre-ovulatory enlargement of the cumulus mass seen at mucification

...and even in the oocyte

In Mammals due to LH peak the oocyte can overcome the first meiotic arrest **resuming meiotic progression**.

That happens only in **fully grown/ meiotic competent oocytes** enclosed within pre-ovulatory follicles.

MEIOTIC MATURATION

Following LH stimulation the oocyte resumes meiosis and again stops at MII stage

Pay attention!

MEIOSIS

Consists of two consecutive cell divisions (meiosis I and II) without an intermediate S phase. The result is that gametes are haploid

Female meiosis is a long and discontinuous process

THE OOCYTE MATURATION

How long is oocyte meiosis?

When it starts and when it finishes?

Female meiosis is a long and discontinuous process

 Male meiosis is definitely shorter than female meiosis

Gametes and meiosis

Although meiosis in male and female animals follows roughly the same lines, there are some important distinctions

Unit 1: Biology of gametes

THE OOCYTE MATURATION

- **✓**Definition
- What is the purpose of the process?
- What triggers the process?
- ✓How long is the process?

What happens to the oocyte during maturation?