
Fosforilazione ossidativa

FOSFORILAZIONE OSSIDATIVA

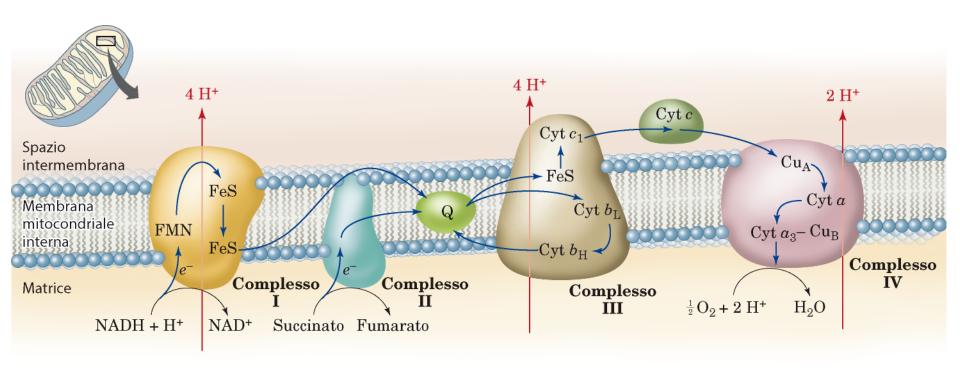
La fosforilazione ossidativa è la via finale del metabolismo energetico, in cui gli elettroni (NADH e FADH₂) provenienti dalle molecole energetiche sono trasferiti all'ossigeno molecolare in modo da alimentare la sintesi di ATP.

È la fonte principale di ATP negli animali (p.e., essa produce 26 delle 30 molecole di ATP generate dalla ossidazione completa del glucosio).

La **fosforilazione ossidativa** è un processo che genera ATP tramite il trasferimento di elettroni dai coenzimi redox ridotti fino all'ossigeno, mediante una serie di **trasportatori**.

CATENA di TRASPORTO degli ELETTRONI

Concetti chiave

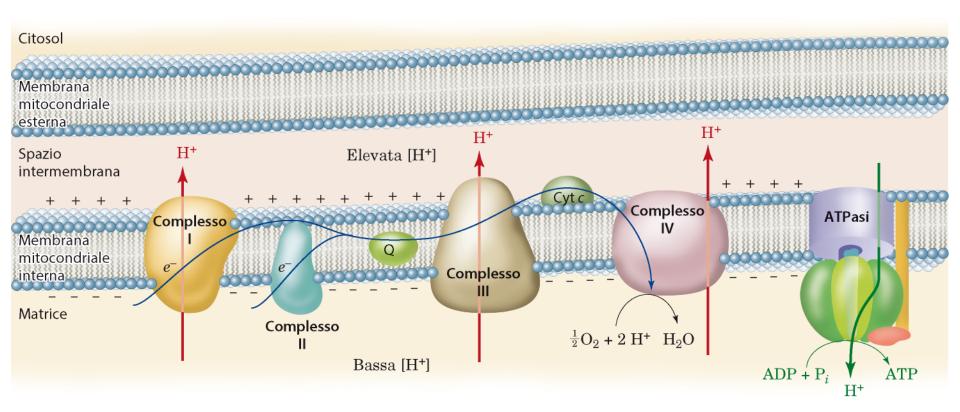

- La **catena respiratoria** è un sistema di trasportatori di elettroni collegati tra loro (quattro complessi enzimatici intramembrana e due trasportatori mobili, coenzima Q, o CoQ, e citocromo c) e localizzati sulla membrana mitocondriale interna. I trasportatori di elettroni sono disposti nella membrana mitocondriale in modo che gli elettroni passino dai complessi I e II, attraverso il CoQ, al complesso III e da qui, attraverso il citocromo c, al complesso IV che li cede infine all'ossigeno.
- Il complesso I trasferisce elettroni dal NADH al CoQ (ubichinone) attraverso una serie di centri ferro-zolfo e trasloca quattro protoni nello spazio intermembrana. Il CoQ è un lipide terpenoide liberamente mobile all'interno della membrana mitocondriale interna.
- Il **complesso II** (contenente la **succinato deidrogenasi**) trasferisce elettroni dal FADH₂ (succinato) al CoQ, ma non agisce da pompa protonica.

Il trasporto degli elettroni

Concetti chiave

- Il **complesso III** accetta gli elettroni dal CoQ ridotto (ubichinolo, CoQH₂) e li cede, uno per volta, al citocromo *c*, traslocando nel complesso quattro protoni per ogni coppia di elettroni trasferiti.
- Il **citocromo** *c* è una proteina periferica di membrana coniugata a un gruppo eme in grado di legare reversibilmente un elettrone.
- Il **complesso IV** (o citocromo ossidasi) accetta gli elettroni dal citocromo c riducendo l'O₂ a H₂O e trasloca due protoni per ogni coppia di elettroni trasferiti.

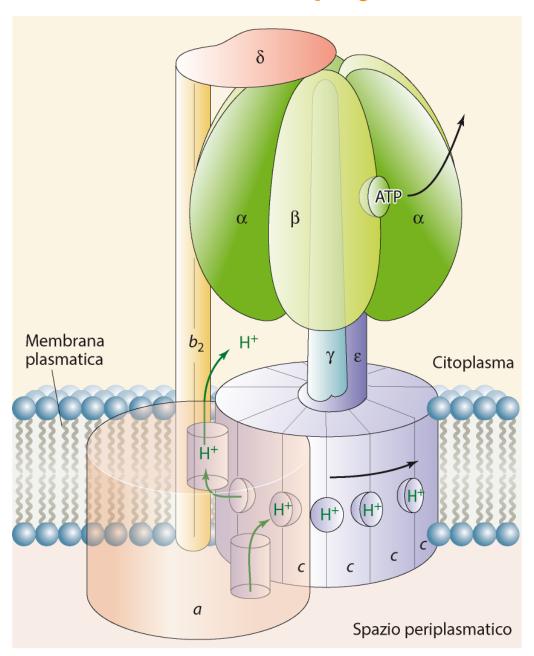
La catena di trasporto degli elettroni mitocondriale


Formazione delle specie reattive dell'ossigeno (ROS). Qualunque alterazione nella velocità di trasferimento coordinato degli elettroni dai coenzimi ridotti all'ossigeno determina la formazione a livello di ciascun complesso di specie ossidanti: anione superossido, radicale ossidrile, acqua ossigenata. Le cellule si difendono dai ROS tramite una difesa enzimatica: superossido dismutasi, catalasi e glutatione perossidasi.

La fosforilazione ossidativa

Concetti chiave

- La teoria chemiosmotica spiega come un gradiente protonico possa collegare il trasporto degli elettroni alla sintesi dell'ATP: l'energia libera immagazzinata nel gradiente elettrochimico protonico (ΔV e $\Delta [H^+]$) viene usata dall'ATP sintasi per alimentare la sintesi di ATP.
- L'ATP sintasi è complesso multiproteico intramembrana costituito da un componente F_1 che catalizza la sintesi dell'ATP da ADP e P_i (fosforilazione ossidativa) e una componente Fo che contiene un canale che ruota al passaggio dei protoni inducendo modificazioni conformazionali alla subunità F_1 .
- L'energia libera del trasporto degli elettroni dal **NADH** all'O₂ può alimentare la sintesi di circa **2.5 molecole di ATP**. L'energia libera del trasporto degli elettroni dal **FADH**₂ (succinato) all'O₂ può alimentare la sintesi di circa **1.5 molecole di ATP**.


L'accoppiamento del trasporto degli elettroni alla sintesi dell'ATP: teoria chemiosmotica

Il flusso di elettroni è accoppiato alla traslocazione dei protoni dalla matrice mitocondriale allo spazio intermembrana. La forza motrice protonica così generata alimenta l'attività dell'ATP sintasi.

Il disaccoppiamento tra trasporto di elettroni e fosforilazione ossidativa genera calore (es. termogenina del grasso bruno)

Modello dell'F₁F₀-ATPasi

