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Creating efficiency in Al research will
decrease its carbon footprint and increase
its inclusivity as deep learning study should
not require the deepest pockets.

BY ROY SCHWARTZ, JESSE DODGE,
NOAH A. SMITH, AND OREN ETZIONI

Green Al

SINCE 2012, THE field of artificial intelligence (AI) has
reported remarkable progress on a broad range of
capabilities including object recognition, game playing,
speech recognition, and machine translation.** Much of
this progress has been achieved by increasingly large
and computationally intensive deep learning models.?
Figure 1, reproduced from Amodei et al.,? plots training
cost increase over time for state-of-the-art deep learning
models starting with AlexNet in 2012%* to AlphaZero in
2017.% The chart shows an overall increase of 300,000x,
with training cost doubling every few months. An even
sharper trend can be observed in NLP word-embedding
approaches by looking at ELMo* followed by BERT,?
openGPT-2,**> XLNet,”® Megatron-LM,* T5,* and GPT-3.
An important paper?” has estimated the carbon
footprint of several NLP models and argued this trend is
both environmentally unfriendly and prohibitively
expensive, raising barriers to participation in NLP
research. We refer to such work as Red Al

a For brevity, we refer to AI throughout this article, but our focus is on Al research that relies on deep
learning methods.

54 COMMUNICATIONS OF THE ACM | DECEMBER 2020 | VOL. 63 | NO.12

This trend is driven by the strong fo-
cus of the AI community on obtaining
“state-of-the-art” results,” as exemplified
by the popularity of leaderboards,>>*
which typically report accuracy (or other
similar measures) but omit any men-
tion of cost or efficiency (see, for ex-
ample, leaderboards.allenai.org).c De-
spite the clear benefits of improving
model accuracy, the focus on this sin-
gle metric ignores the economic, envi-
ronmental, and social cost of reaching
the reported results.

We advocate increasing research
activity in Green AI—AI research that
is more environmentally friendly and
inclusive. We emphasize that Red Al
research has been yielding valuable
scientific contributions to the field,
but it has been overly dominant. We
want to shift the balance toward the
Green Al option—to ensure any in-
spired undergraduate with a laptop
has the opportunity to write high-
quality papers that could be accepted
at premier research conferences. Spe-
cifically, we propose making efficien-
cy a more common evaluation criteri-
on for AI papers alongside accuracy
and related measures.

b Meaning, in practice, that a system’s accuracy
on some benchmark is greater than any previ-
ously reported system’s accuracy.

¢ Some leaderboards do focus on efficiency
(https://dawn.cs.stanford.edu/benchmark/).

key insights

® The computational costs of state-of-the-
art Al research has increased 300,000x in
recent years. This trend, denoted Red Al,
stems from the Al community’s focus on
accuracy while paying attention to efficiency.

® Red Al leads to a surprisingly large
carbon footprint, and makes it difficult for
academics, students, and researchers to
engage in deep learning research.

m An alternative is Green Al, which treats
efficiency as a primary evaluation
criterion alonside accuracy. To measure
efficiency, we suggest reporting the
number of floating-point operations
required to generate a result.

m Green Al research will decrease Al's
environmental footprint and increase
its inclusivity.

ILLUSTRATION BY LISA SHEEHAN
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Al research can be computationally
expensive in a number of ways, but
each provides opportunities for effi-
cient improvements; for example, pa-
pers can plot performance as a function
of training set size, enabling future
work to compare performance even
with small training budgets. Reporting
the computational price tag of develop-
ing, training, and running models is a
key Green Al practice (see Equation 1).
In addition to providing transparency,
price tags are baselines that other re-
searchers could improve on.

Our empirical analysis in Figure 2
suggests the AI research community
has paid relatively little attention to
computational efficiency. In fact, as

Figure 1 illustrates, the computational
cost of high-budget research is in-
creasing exponentially, at a pace that
far exceeds Moore’s Law.* Red Al is on
the rise despite the well-known dimin-
ishing returns of increased cost (for
example, Figure 3).

This article identifies key factors that
contribute to Red AI and advocates the
introduction of a simple, easy-to-com-
pute efficiency metric that could help
make some Al research greener, more
inclusive, and perhaps more cognitively
plausible. Green Al is part of a broader,
long-standing interest in environmen-
tally friendly scientific research (for ex-
ample, see the Journal Green Chemistry).
Computer science, in particular, has a

Figure 1. The amount of compute used to train deep learning models has increased

300,000x in six years. Figure taken from Amodei et al.?
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Figure 2. Al papers tend to target accuracy rather than efficiency. The figure shows the

proportion of papers that target accuracy, efficiency, both or other from a random sample

of 60 papers from top Al conferences.
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long history of investigating sustainable
and energy-efficient computing (for ex-
ample, see the Journal Sustainable Com-
puting: Informatics and Systems).

In this article, we analyze practices
that move deep-learning research into
the realm of Red AI. We then discuss
our proposals for Green Al and con-
sider related work, and directions for
future research.

Red Al

Red Al refers to Al research that seeks
to improve accuracy (or related mea-
sures) through the use of massive
computational power while disregard-
ing the cost—essentially “buying”
stronger results. Yet the relationship
between model performance and
model complexity (measured as num-
ber of parameters or inference time)
haslong been understood to be at best
logarithmic; for a linear gain in per-
formance, an exponentially larger
model is required.”® Similar trends ex-
ist with increasing the quantity of
training data'**® and the number of
experiments.”'° In each of these cases,
diminishing returns come at in-
creased computational cost.

This section analyzes the factors
contributing to Red AI and shows how
it is resulting in diminishing returns
over time (see Figure 3). We note that
Red AI work is valuable, and in fact,
much of it contributes to what we
know by pushing the boundaries of AI
Our exposition here is meant to high-
light areas where computational ex-
pense is high, and to present each as
an opportunity for developing more
efficient techniques.

To demonstrate the prevalence of
Red Al, we randomly sampled 60 pa-
pers from top AI conferences (ACL,
NeurIPS, and CVPR).4 For each paper
we noted whether the authors claim
their main contribution to be (a) an
improvement to accuracy or some re-
lated measure, (b) an improvement to
efficiency, (c) both, or (d) other. As
shown in Figure 2, in all conferences
we considered, a large majority of the
papers target accuracy (90% of ACL
papers, 80% of NeurIPS papers and
75% of CVPR papers). Moreover, for
both empirical AI conferences (ACL

d https://acl2018.org; https://nips.cc/Conferences/
2018; and http://cvpr2019.thecvf.com.
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Figure 3. Diminishing returns of training on more data: object detection accuracy increases linearly as the number of training examples

increases exponentially.®®
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and CVPR) only a small portion (10%
and 20% respectively) argue for a new
efficiency result.© This highlights the
focus of the Al community on mea-
sures of performance such as accura-
cy, at the expense of measures of effi-
ciency such as speed or model size. In
this article, we argue that a larger
weight should be given to the latter.
To better understand the different
ways in which AI research can be red,
consider an Al result reported in a sci-
entific paper. This result typically
characterizes a model trained on a

e Interestingly, many NeurIPS papers included
convergence rates or regret bounds that de-
scribe performance as a function of exam-
ples or iterations, thus targeting efficiency
(55%). This indicates an increased awareness
of the importance of this concept, at least in
theoretical analyses.

training dataset and evaluated on a
test dataset, and the process of devel-
oping that model often involves mul-
tiple experiments to tune its hyperpa-
rameters. We thus consider three
dimensions that capture much of the
computational cost of obtaining such
a result: the cost of executing the
model on a single (E)xample (either
during training or at inference time);
the size of the training (D)ataset,
which controls the number of times
the model is executed during train-
ing, and the number of (H)yperparam-
eter experiments, which controls how
many times the model is trained dur-
ing model development. The total
cost of producing a (R)esult in ma-
chine learning increases linearly with
each of these quantities. This cost can
be estimated as follows:

DECEMBER 2020 | VOL.63 | NO.12

Number of training images in source task (Instagram)

Cost(R)yxE-D-H

Equation 1. The equation of Red AL

The cost of an AI (R)esult grows linearly with
the cost of processing a single (E)xample,
the size of the training (D)ataset and the
number of (H)yperparameter experiments.

Equation 1 is a simplification (for
example, different hyperparameter as-
signments can lead to different costs
for processing a single example). It
also ignores other factors such as the
number of training epochs or data
augmentation. Nonetheless, it illus-
trates three quantities that are each an
important factor in the total cost of
generating a result. Next, we consider
each quantity separately.

Expensive processing of one example.
Our focus is on neural models, where it
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is common for each training step to re-
quire inference, so we discuss training
and inference cost together as “pro-
cessing” an example (though see dis-
cussion below). Some works have used
increasingly large models in terms of,
for example, model parameters, and as
a result, in these models, performing
inference can require a lot of computa-
tion, and training even more so. For in-
stance, Google’s BERT-large® contains
roughly 350 million parameters. Ope-
nAI's openGPT2-XL model* contains
1.5 billion parameters. AI2, our home
organization, released Grover,” also
containing 1.5 billion parameters.
NVIDIA released Megatron-LM,* con-
taining over 8 billion parameters.
Google’s T5-11B*¢ contains 11 billion
parameters. Most recently, openAl re-
leased openGPT-3,* containing 175 bil-
lion parameters. In the computer vi-
sion community, a similar trend is
observed (Figure 1).

Such large models have high costs
for processing each example, which
leads to large training costs. BERT-
large was trained on 64 TPU chips for
four days at an estimated cost of
$7,000. Grover was trained on 256 TPU
chips for two weeks, at an estimated
cost of $25,000. XLNet had a similar ar-
chitecture to BERT-large, but used a
more expensive objective function (in
addition to an order of magnitude more
data),and was trained on 512 TPU chips
for 2.5 days, costing more than $60,000.f
It is impossible to reproduce the best
BERT-large results or XLNet results us-
ing a single GPU,¢ and models such as
openGPT2 are too large to be used in
production.” Specialized models can
have even more extreme costs, such as
AlphaGo, the best version of which re-
quired 1,920 CPUs and 280 GPUs to
play a single game of Go,* with an esti-
mated cost to reproduce this experi-
ment of $35,000,000.%

When examining variants of a single
model (for example, BERT-small and
BERT-large) we see that larger models

f https://syncedreview.com/2019/06/27/the-
staggering-cost-of-training-sota-aimodels/

g See https://github.com/google-research/bert
and https://github.com/zihangdai/xInet.

h https://towardsdatascience.com/too-big-to-
deploy-how-gpt-2-is-breakingproduction-
63ab29f0897¢

i https://www.yuzeh.com/data/agz-cost.html

j Recent versions of AlphaGo are far more effi-
cient.*
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can have stronger performance, which
is a valuable scientific contribution.
However, this implies the financial and
environmental cost of increasingly
large Al models will not decrease soon,
as the pace of model growth far exceeds
the resulting increase in model perfor-
mance.’® As a result, more and more
resources are going to be required to
keep improving AI models by simply
making them larger.

Finally, we note that in some cases
the price of processing one example
might be different at training and test
time. For instance, some methods tar-
get efficient inference by learning a
smaller model based on the large
trained model. These models often do
not lead to more efficient training, as
the cost of E is only reduced at infer-
ence time. Models used in production
typically have computational costs
dominated by inference rather than
training, butin research training is typ-
ically much more frequent, so we advo-
cate studying methods for efficient
processing of one example in both
training and inference.

Processing many examples. Increased
amounts of training data have also
contributed to progress in state-of-the-
art performance in AI. BERT-large had
top performance in 2018 across many
NLP tasks after training on three bil-
lion word-pieces. XLNet outperformed
BERT after training on 32 billion word-
pieces, including part of Common
Crawl; openGPT-2-XL trained on 40 bil-
lion words; FAIR’S RoBERTa*® was
trained on 160GB of text, roughly 40
billion word-pieces, requiring around
25,000 GPU hours to train. T5-11B%
was trained on 1 trillion tokens, 300
times more than BERT-large. In com-
puter vision, researchers from Face-
book® pretrained an image classifica-
tion model on 3.5 billion images from
Instagram, three orders of magnitude
larger than existing labeled image da-
tasets such as Open Images.*

The use of massive data creates barri-
ers for many researchers to reproducing
the results of these models, and to train-
ing their own models on the same setup
(especially as training for multiple ep-
ochs is standard). For example, the July
2019 Common Crawl contains 242TB of

k https://opensource.google.com/projects/
open-images-dataset

VOL. 63 | NO.12

uncompressed data,' so even storing the
datais expensive. Finally, as in the case of
model size, relying on more data to im-
prove performance is notoriously ex-
pensive because of the diminishing re-
turns of adding more data.** Forinstance,
Figure 3, taken from Mahajan et al.,*
shows a logarithmic relation between
the object recognition top-1 accuracy
and the number of training examples.

Massive number of experiments.
Some projects have poured large
amounts of computation into tuning
hyperparameters or searching over neu-
ral architectures, well beyond the reach
of most researchers. For instance, re-
searchers from Google® trained over
12,800 neural networks in their neural
architecture search to improve perfor-
mance on object detection and lan-
guage modeling. With a fixed architec-
ture, researchers from DeepMind?*
evaluated 1,500 hyperparameter assign-
ments to demonstrate that an LSTM
language model”” can reach state-of-
the-art perplexity results. Despite the
value of this result in showing that the
performance of an LSTM does not pla-
teau after only a few hyperparameter
trials, fully exploring the potential of
other competitive models for a fair
comparison is prohibitively expensive.

The value of massively increasing
the number of experiments is not as
well studied as the first two discussed
previously. In fact, the number of ex-
periments performed during model
construction is often underreported.
Nonetheless, evidence for a logarith-
mic relation exists here as well.>'

Discussion. The increasing costs of
Al experiments offer a natural econom-
ic motivation for developing more effi-
cient AI methods. It might be the case
that at a certain point prices will be too
high, forcing even researchers with
large budgets to develop more efficient
methods. Our analysis in Figure 2
shows that currently most effort is still
being dedicated to accuracy rather
than efficiency. At the same time, AI
technology is already very expensive to
train or execute, which limits the abili-
ty of many researchers to study it, and
of practitioners to adopt it. Combined
with environmental pricetag of AIL,*” we
believe more effort should be devoted
toward efficient AI solutions.

1 http://commoncrawl.org/2019/07/



We want to reiterate that Red Al
work is extremely valuable, and in fact,
much of it contributes to what we know
about pushing the boundaries of AL In-
deed, there is value in pushing the lim-
its of model size, dataset size, and the
hyperparameter search budget.

In addition, Red AI can provide op-
portunities for future work to promote
efficiency; for example, evaluating a
model on varying amounts of training
data will provide an opportunity for fu-
ture researchers to build on the work
without needing a budget large enough
to train on a massive dataset. Current-
ly, despite the massive amount of re-
sources put into recent AI models,
such investment still pays off in terms
of downstream performance (albeit at
an increasingly lower rate). Finding the
point of saturation (if such exists) is an
important question for the future of Al
Moreover, Red Al costs can even some-
times be amortized, because a Red Al
trained module may be reused by many
research projects as a built-in compo-
nent, which doesn’t require retraining.

The goal of this article is twofold:
first, we want to raise awareness to the
costof Red Al and encourage researchers
that use such methods to take steps to al-
low for more equitable comparisons,
such as reporting training curves. Sec-
ond, we want to encourage the AI com-
munity to recognize the value of work by
researchers that take a different path,
optimizing efficiency rather than accu-
racy. Next, we turn to discuss concrete
measures for making AI more green.

GREEN Al

The term Green Al refers to Al research
thatyields novel results while taking into
account the computational cost, encour-
aging a reduction in resources spent.
Whereas Red Al has resulted in rapidly
escalating computational (and thus car-
bon) costs, Green Al promotes approach-
es that have favorable performance/effi-
ciency trade-offs. If measures of
efficiency are widely accepted as im-
portant evaluation metrics for research
alongside accuracy, then researchers
will have the option of focusing on the
efficiency of their models with positive
impact on both inclusiveness and the
environment. Here, we review several
measures of efficiency that could be re-
ported and optimized, and advocate
one particular measure—FPO—which

Some projects
have poured

large amounts

of computation
into tuning
hyperparameters
or searching

over neural
architectures, well
beyond the reach of
most researchers.
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we argue should be reported when Al
research findings are published.

Measures of efficiency. To measure
efficiency, we suggest reporting the
amount of work required to generate a
result. Specifically, the amount of work
required to train a model, and if appli-
cable, the aggregated amount of work
required for all hyperparameter tuning
experiments. As the cost of an experi-
ment decomposes into the cost of a
processing a single example, the size of
the dataset, and the number of experi-
ments (Equation 1), reducing the
amount of work in each of these steps
will result in Al that is more green.

We do encourage Al practitioners to
use efficient hardware to reduce energy
costs, but the dramatic increase in
computational cost observed over re-
cent years is primarily from modeling
and algorithmic choices; our focus is
on how to incorporate efficiency there.
When reporting the amount of work
done by a model, we want to measure a
quantity that allows for a fair compari-
son between different models. As a re-
sult, this measure should ideally be
stable across different labs, at different
times, and using different hardware.

Carbon emission. Carbon emission
is appealing as it is a quantity we want
to directly minimize. Nonetheless it is
difficult to measure the exact amount
of carbon released by training or exe-
cuting a model, and accordingly—gen-
erating an Al result, as this amount de-
pends highly on the local electricity
infrastructure (though see initial ef-
forts by Henderson et al.'® and Lacoste
etal.”®). As aresult, it is not comparable
between researchers in different loca-
tions or even the same location at dif-
ferent times.'®

Electricity usage. Electricity usage is
correlated with carbon emission while
being time- and location-agnostic.
Moreover, GPUs often report the
amount of electricity each of their
cores consume at each time point,
which facilitates the estimation of the
total amount of electricity consumed
by generating an Al result. Nonethe-
less, this measure is hardware depen-
dent, and as a result does not allow for a
fair comparison between different mod-
els developed on different machines.

Elapsed real time. The total running
time for generating an Al resultis a nat-
ural measure for efficiency, as all other
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things being equal, a faster model is do-
ing less computational work. Nonethe-
less, this measure is highly influenced
by factors such as the underlying hard-
ware, other jobs running on the same
machine, and the number of cores
used. These factors hinder the compar-
ison between different models, as well
as the decoupling of modeling contri-
butions from hardware improvements.

Number of parameters. Another
common measure of efficiency is the
number of parameters (learnable or
total) used by the model. As with run-
time, this measure is correlated with
the amount of work. Unlike the other
measures described previously, it
does not depend on the underlying
hardware. Moreover, this measure
also highly correlates with the
amount of memory consumed by the
model. Nonetheless, different algo-
rithms make different use of their pa-
rameters, for instance by making the
model deeper vs. wider. As a result,
different models with a similar num-
ber of parameters often perform dif-
ferent amounts of work.

FPO. As a concrete measure, we
suggest reporting the total number of
floating-point operations (FPO) re-
quired to generate a result.” FPO pro-
vides an estimate of the amount of
work performed by a computational
process. It is computed analytically by
defining a cost to two base operations,
ADD and MUL. Based on these opera-
tions, the FPO cost of any machine
learning abstract operation (for exam-
ple, a tanh operation, a matrix multipli-
cation, a convolution operation, or the
BERT model) can be computed as a re-
cursive function of these two opera-
tions. FPO has been used in the past to
quantify the energy footprint of a
model,'*3*%05! but is not widely adopt-
ed in AIL. FPO has several appealing
properties. First, it directly computes
the amount of work done by the run-
ning machine when executing a spe-
cific instance of a model and is thus
tied to the amount of energy con-
sumed. Second, FPO is agnostic to
the hardware on which the model is
run. This facilitates fair comparisons

m Floating point operations are often referred to
as FLOP(s), though this term is not uniquely
defined.'® To avoid confusion, we use the term
FPO.
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between different approaches, unlike
the measures described above. Third,
FPO is often correlated with the run-
ning time of the model® (though see
discussion below). Unlike asymptotic
runtime, FPO also considers the
amount of work done at each time step.

Several packages exist for comput-
ing FPO in various neural network
libraries,” though none of them con-
tains all the building blocks required
to construct all modern AI models. We
encourage the builders of neural net-
work libraries to implement such func-
tionality directly.

Discussion. Efficient machine learn-
ing approaches have received attention
in the research community but are gen-
erally not motivated by being green. For
example, a significant amount of work
in the computer vision community has
addressed efficient inference,'®38%8
which is necessary for real-time process-
ing of images for applications like self-
driving cars,*”?*%¥ or for placing models
on devices such as mobile phones.'*
Most of these approaches only minimize
the cost of processing a single example,
while ignoring the other two red practic-
es discussed perviously.® Other meth-
ods to improve efficiency aim to devel-
op more efficientarchitectures, starting
from the adoption of graphical process-
ing units (GPU) to Al algorithms, which
was the driving force behind the deep
learning revolution, up to more recent
development of hardware such as ten-
sor processing units (TPUs*?).

The examples here indicate the path
to making AI green depends on how it
isused. When developing a new model,
much of the research process involves
training many model variants on a
training set and performing inference
on a small development set. In such a
setting, more efficient training proce-
dures can lead to greater savings, while
in a production setting more efficient
inference can be more important. We
advocate for a holistic view of computa-
tional savings which doesn’t sacrifice in
some areas to make advances in others.

FPO has some limitations. Most im-
portantly, the energy consumption of a

n For example, https://github.com/Swallow/
torchstat; https://github.com/Lyken17/
pytorch-OpCounter

o In fact, creating smaller models often results
in longer running time, so mitigating the dif-

ferent trends might be at odds.>?
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Figure 4. Increase in FPO leads to diminishing return for object detection top-1 accuracy. Plots (bottom to top): model parameters (in million),
FPO (in billions), top-1 accuracy on ImageNet. 4(a). Leading object recognition models: AlexNet,? ResNet,'* ResNext,>* DPN107,° SENet154.'°

4(b): Comparison of different sizes (measured by the number of layers) of the ResNet model.*®

87

70 1

acc.

56.4

78.4

81.3

55

26

13 1

FBO (B)

0.7

18.4

130

90 A
61.1

params (M)

1151

60.2

50

T
AlexNet
2012

82

T
ResNet152

I
ResNext
2017
Model/Year

2015

T
DPN107

T
SENet154

2017 2018

73.6

acc.

751
70.1

68

7.4

78.4

76.0

15

10 1

FBO (B)

18

11.6

75

50 1

params (M)

50 1

18 34

model is not only influenced by the
amount of work, but also from other
factors such as the communication be-
tween the different components, which
is not captured by FPO. As a result, FPO
doesn’talways correlate with other mea-
sures such as runtime?! and energy con-
sumption.’® Second, FPO targets the
number of operations performed by a
model, while ignoring other potential
limiting factors for researchers such as
the memory used by the model, which
can often lead to additional energy and
monetary costs.? Finally, the amount of

50 1[IJl
Number of Layers

work done by a model largely depends
on the model implementation, as two
different implementations of the same
model could result in very different
amounts of processing work. Due to the
focus on the modeling contribution, the
Al community has traditionally ignored
the quality or efficiency of models’ im-
plementation.? We argue the time to re-
verse this norm has come, and that ex-
ceptionally good implementations that

p We consider this exclusive focus on the final
prediction another symptom of Red Al

152

lead to efficient models should be cred-
ited by the A community.

FPO cost of existing models. To
demonstrate the importance of report-
ing the amount of work, we present
FPO costs for several existing models.4
Figure 4(a) shows the number of pa-
rameters and FPO of several leading
object recognition models, as well as
their performance on the ImageNet

q These numbers represent FPO per inference,
that is, the work required to process a single
example.
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dataset.”" A few trends are observable.
First, as discussed earlier, models get
more expensive with time, but the in-
crease in FPO does not lead to similar
performance gains. For instance, an
increase of almost 35% in FPO between
ResNet and ResNext (second and third
points in graph) resulted in a 0.5% top-1
accuracy improvement. Similar pat-
terns are observed when considering
the effect of other increases in model
work. Second, the number of model pa-
rameters does not tell the whole story:
AlexNet (first point in the graph) actu-
ally has more parameters than ResNet
(second point), but dramatically less
FPO, and also much lower accuracy.

Figure 4(b) shows the same analysis
for a single object recognition model,
ResNet," while comparing different ver-
sions of the model with different num-
bers of layers. This creates a controlled
comparison between the different mod-
els, as they are identical in architecture,
except for their size (and accordingly,
their FPO cost). Once again, we notice
the same trend: the large increase in
FPO cost does not translate to alarge in-
crease in performance.

Additional ways to promote Green
Al There are many ways to encourage
research that is more green. In addi-
tion to reporting the FPO cost for each
term in Equation 1, we encourage re-
searchers to report budget/perfor-
mance curves where possible. For ex-
ample, training curves provide
opportunities for future researchers to
compare at a range of different bud-
gets and running experiments with dif-
ferent model sizes provides valuable
insight into how model size impacts
performance. In a recent paper,’ we ob-
served that the claim as to which model
performs best depends on the compu-
tational budget available during model
development. We introduced a method
for computing the expected best vali-
dation performance of a model as a
function of the given budget. We argue
that reporting this curve will allow us-
ers to make wiser decisions about their
selection of models and highlight the
stability of different approaches.

We further advocate for making ef-
ficiency an official contribution in ma-
jor Al conferences by advising reviewers

r Numbers taken from https://github.com/
sovrasov/flops-counter.pytorch.
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to recognize and value contributions
that do not strictly improve state of the
art but have other benefits such as effi-
ciency. Finally, we note that the trend of
releasing pretrained models publicly is
a green success, and we would like to
encourage organizations to continue
to release their models in order to save
others the costs of retraining them.

Related Work

Recent work has analyzed the carbon
emissions of training deep NLP mod-
els*” and concluded that computation-
ally expensive experiments can have a
large environmental and economic
impact. With modern experiments us-
ing such large budgets, many re-
searchers (especially those in aca-
demia) lack the resources to work in
many high-profile areas; increased
value placed on computationally effi-
cient approaches will allow research
contributions from more diverse
groups. We emphasize that the con-
clusions of Stubell et al.” are the re-
sult of long-term trends, and are not
isolated within NLP, but hold true
across machine learning.

While some companies offset elec-
tricity usage by purchasing carbon
credits, it is not clear that buying cred-
its is as effective as using less energy.
In addition, purchasing carbon cred-
its is voluntary; Google cloud® and Mi-
crosoft Azure' purchase carbon credits
to offset their spent energy, but Ama-
zon’s AWS" (the largest cloud comput-
ing platform) only covered 50% of its
power usage with renewable energy.

The push to improve state-of-the-art
performance has focused the research
community’s attention on reporting the
single bestresult after running many ex-
periments for model development and
hyperparameter tuning. Failure to fully
report these experiments prevents fu-
ture researchers from understanding
how much effort is required to repro-
duce aresult or extend it.°

Our focus is on improving efficien-
cy in the machine learning communi-
ty, but machine learning can also be
used as a tool for work in areas like

s https://cloud.google.com/sustainability/

t https://www.microsoft.com/en-us/environ-
ment/carbon

u https://aws.amazon.com/about-aws/sustain-
ability/

v https://tinyurl.com/y2kob969
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climate change. For example, ma-
chine learning has been used for re-
ducing emissions of cement plants!
and tracking animal conservation
outcomes,' and is predicted to be
useful for forest fire management.*
Undoubtedly these are important ap-
plications of machine learning; we
recognize they are orthogonal to the
content of this article.

Conclusion
The vision of Green Al raises many ex-
citing research directions that help to
overcome the challenges of Red AI
Progress will find more efficient ways
to allocate a given budget to improve
performance, or to reduce the compu-
tational expense with a minimal re-
duction in performance. Also, it would
seem that Green Al could be moving us
in a more cognitively plausible direc-
tion as the brain is highly efficient.
Itis important to reiterate that we see
Green Al as a valuable option, not an ex-
clusive mandate—of course, both Green
Al and Red AI have contributions to
make. Our goals are to augment Red Al
with green ideas, like using more effi-
cient training methods, and reporting
training curves; and to increase the prev-
alence of Green AI by highlighting its
benefits, advocating a standard measure
of efficiency. Here, we point to a few im-
portant green research directions, and
highlight a few open questions.
Research on building space- or time-
efficient models is often motivated by
fitting a model on a small device (such
as a phone) or fast enough to process ex-
amples in real time, such as image cap-
tioning for the blind (as discussed previ-
ously). Here, we argue for a far broader
approach that promotes efficiency for
all parts of the AI development cycle.
Data efficiency has received signifi-
cant attention over the years.?##
Modern research in vision and NLP of-
ten involves first pretraining a model
on large “raw” (unannotated) data
then finetuning it to a task of interest
through supervised learning. A strong
result in this area often involves
achieving similar performance to a
baseline with fewer training examples
or fewer gradient steps. Most recent
work has addressed fine-tuning data,*
but pretraining efficiency is also im-
portant. In either case, one simple
technique to improve in this area is to



simply report performance with dif-
ferent amounts of training data. For
example, reporting performance of
contextual embedding models trained
on 10 million, 100 million, 1 billion,
and 10 billion tokens would facilitate
faster development of new models, as
they can first be compared at the
smallest data sizes.

Research here is of value not just to

make training less expensive, but be-
cause in areas such as low resource lan-
guages or historical domains it is ex-
tremely difficult to generate more data,
so to progress we must make more ef-
ficient use of what is available.

Finally, the total number of experi-

ments run to get a final result is often
underreported and underdiscussed.’
The few instances researchers have of
full reporting of the hyperparameter
search, architecture evaluations, and
ablations that went into a reported ex-
perimental result has surprised the
community.”” While many hyperpa-
rameter optimization algorithms ex-
ist, which can reduce the computa-
tional expense required to reach a
given level of performance,®'! simple
improvements here can have a large
impact. For example, stopping train-
ing early for models that are clearly
underperforming can lead to great
savings.?®
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