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Creating efficiency in AI research will  
decrease its carbon footprint and increase  
its inclusivity as deep learning study should 
not require the deepest pockets. 

BY ROY SCHWARTZ, JESSE DODGE,  
NOAH A. SMITH, AND OREN ETZIONI

SINCE 2012,  THE field of artificial intelligence (AI) has 
reported remarkable progress on a broad range of 
capabilities including object recognition, game playing, 
speech recognition, and machine translation.43 Much of 
this progress has been achieved by increasingly large 
and computationally intensive deep learning models.a 
Figure 1, reproduced from Amodei et al.,2 plots training 
cost increase over time for state-of-the-art deep learning 
models starting with AlexNet in 201224 to AlphaZero in 
2017.45 The chart shows an overall increase of 300,000x, 
with training cost doubling every few months. An even 
sharper trend can be observed in NLP word-embedding 
approaches by looking at ELMo34 followed by BERT,8 
openGPT-2,35 XLNet,56 Megatron-LM,42 T5,36 and GPT-3.4 
An important paper47 has estimated the carbon 
footprint of several NLP models and argued this trend is 
both environmentally unfriendly and prohibitively 
expensive, raising barriers to participation in NLP 
research. We refer to such work as Red AI.
a	 For brevity, we refer to AI throughout this article, but our focus is on AI research that relies on deep 

learning methods.

This trend is driven by the strong fo-
cus of the AI community on obtaining 
“state-of-the-art” results,b as exemplified 
by the popularity of leaderboards,53,54 
which typically report accuracy (or other 
similar measures) but omit any men-
tion of cost or efficiency (see, for ex-
ample, leaderboards.allenai.org).c De-
spite the clear benefits of improving 
model accuracy, the focus on this sin-
gle metric ignores the economic, envi-
ronmental, and social cost of reaching 
the reported results.

We advocate increasing research 
activity in Green AI—AI research that 
is more environmentally friendly and 
inclusive. We emphasize that Red AI 
research has been yielding valuable 
scientific contributions to the field, 
but it has been overly dominant. We 
want to shift the balance toward the 
Green AI option—to ensure any in-
spired undergraduate with a laptop 
has the opportunity to write high-
quality papers that could be accepted 
at premier research conferences. Spe-
cifically, we propose making efficien-
cy a more common evaluation criteri-
on for AI papers alongside accuracy 
and related measures.

b	 Meaning, in practice, that a system’s accuracy 
on some benchmark is greater than any previ-
ously reported system’s accuracy.

c	 Some leaderboards do focus on efficiency 
(https://dawn.cs.stanford.edu/benchmark/).

Green AI

 key insights
	˽ The computational costs of state-of-the-

art AI research has increased 300,000x in 
recent years. This trend, denoted Red AI, 
stems from the AI community’s focus on 
accuracy while paying attention to efficiency.

	˽ Red AI leads to a surprisingly large 
carbon footprint, and makes it difficult for 
academics, students, and researchers to 
engage in deep learning research.

	˽ An alternative is Green AI, which treats 
efficiency as a primary evaluation 
criterion alonside accuracy. To measure 
efficiency, we suggest reporting the 
number of floating-point operations 
required to generate a result.

	˽ Green AI research will decrease AI’s 
environmental footprint and increase  
its inclusivity.

http://dx.doi.org/10.1145/3381831
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3381831&domain=pdf&date_stamp=2020-11-17
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Figure 1 illustrates, the computational 
cost of high-budget research is in-
creasing exponentially, at a pace that 
far exceeds Moore’s Law.33 Red AI is on 
the rise despite the well-known dimin-
ishing returns of increased cost (for 
example, Figure 3).

This article identifies key factors that 
contribute to Red AI and advocates the 
introduction of a simple, easy-to-com-
pute efficiency metric that could help 
make some AI research greener, more 
inclusive, and perhaps more cognitively 
plausible. Green AI is part of a broader, 
long-standing interest in environmen-
tally friendly scientific research (for ex-
ample, see the Journal Green Chemistry). 
Computer science, in particular, has a 

long history of investigating sustainable 
and energy-efficient computing (for ex-
ample, see the Journal Sustainable Com-
puting: Informatics and Systems).

In this article, we analyze practices 
that move deep-learning research into 
the realm of Red AI. We then discuss 
our proposals for Green AI and con-
sider related work, and directions for 
future research.

Red AI
Red AI refers to AI research that seeks 
to improve accuracy (or related mea-
sures) through the use of massive 
computational power while disregard-
ing the cost—essentially “buying” 
stronger results. Yet the relationship 
between model performance and 
model complexity (measured as num-
ber of parameters or inference time) 
has long been understood to be at best 
logarithmic; for a linear gain in per-
formance, an exponentially larger 
model is required.20 Similar trends ex-
ist with increasing the quantity of 
training data14,48 and the number of 
experiments.9,10 In each of these cases, 
diminishing returns come at in-
creased computational cost.

This section analyzes the factors 
contributing to Red AI and shows how 
it is resulting in diminishing returns 
over time (see Figure 3). We note that 
Red AI work is valuable, and in fact, 
much of it contributes to what we 
know by pushing the boundaries of AI. 
Our exposition here is meant to high-
light areas where computational ex-
pense is high, and to present each as 
an opportunity for developing more 
efficient techniques.

To demonstrate the prevalence of 
Red AI, we randomly sampled 60 pa-
pers from top AI conferences (ACL, 
NeurIPS, and CVPR).d For each paper 
we noted whether the authors claim 
their main contribution to be (a) an 
improvement to accuracy or some re-
lated measure, (b) an improvement to 
efficiency, (c) both, or (d) other. As 
shown in Figure 2, in all conferences 
we considered, a large majority of the 
papers target accuracy (90% of ACL 
papers, 80% of NeurIPS papers and 
75% of CVPR papers). Moreover, for 
both empirical AI conferences (ACL 

d	 https://acl2018.org; https://nips.cc/Conferences/ 
2018; and http://cvpr2019.thecvf.com.

AI research can be computationally 
expensive in a number of ways, but 
each provides opportunities for effi-
cient improvements; for example, pa-
pers can plot performance as a function 
of training set size, enabling future 
work to compare performance even 
with   small training budgets. Reporting 
the computational price tag of develop-
ing, training, and running models is a 
key Green AI practice (see Equation 1). 
In addition to providing transparency, 
price tags are baselines that other re-
searchers could improve on.

Our empirical analysis in Figure 2 
suggests the AI research community 
has paid relatively little attention to 
computational efficiency. In fact, as 

Figure 1. The amount of compute used to train deep learning models has increased  
300,000x in six years. Figure taken from Amodei et al.2
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Equation 1 is a simplification (for 
example, different hyperparameter as-
signments can lead to different costs 
for processing a single example). It 
also ignores other factors such as the 
number of training epochs or data 
augmentation. Nonetheless, it illus-
trates three quantities that are each an 
important factor in the total cost of 
generating a result. Next, we consider 
each quantity separately.

Expensive processing of one example. 
Our focus is on neural models, where it 

Cost (R) ∝ E ∙ D ∙ H

Equation 1. The equation of Red AI:  
The cost of an AI (R)esult grows linearly with 
the cost of processing a single (E)xample,  
the size of the training (D)ataset and the 
number of (H)yperparameter experiments.

and CVPR) only a small portion (10% 
and 20% respectively) argue for a new 
efficiency result.e This highlights the 
focus of the AI community on mea-
sures of performance such as accura-
cy, at the expense of measures of effi-
ciency such as speed or model size. In 
this article, we argue that a larger 
weight should be given to the latter.

To better understand the different 
ways in which AI research can be red, 
consider an AI result reported in a sci-
entific paper. This result typically 
characterizes a model trained on a 

e	 Interestingly, many NeurIPS papers included 
convergence rates or regret bounds that de-
scribe performance as a function of exam-
ples or iterations, thus targeting efficiency 
(55%). This indicates an increased awareness 
of the importance of this concept, at least in 
theoretical analyses.

training dataset and evaluated on a 
test dataset, and the process of devel-
oping that model often involves mul-
tiple experiments to tune its hyperpa-
rameters. We thus consider three 
dimensions that capture much of the 
computational cost of obtaining such 
a result: the cost of executing the 
model on a single (E)xample (either 
during training or at inference time); 
the size of the training (D)ataset, 
which controls the number of times 
the model is executed during train-
ing, and the number of (H)yperparam-
eter experiments, which controls how 
many times the model is trained dur-
ing model development. The total 
cost of producing a (R)esult in ma-
chine learning increases linearly with 
each of these quantities. This cost can 
be estimated as follows:

Figure 3. Diminishing returns of training on more data: object detection accuracy increases linearly as the number of training examples 
increases exponentially.30
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can have stronger performance, which 
is a valuable scientific contribution. 
However, this implies the financial and 
environmental cost of increasingly 
large AI models will not decrease soon, 
as the pace of model growth far exceeds 
the resulting increase in model perfor-
mance.18 As a result, more and more 
resources are going to be required to 
keep improving AI models by simply 
making them larger.

Finally, we note that in some cases 
the price of processing one example 
might be different at training and test 
time. For instance, some methods tar-
get efficient inference by learning a 
smaller model based on the large 
trained model. These models often do 
not lead to more efficient training, as 
the cost of E is only reduced at infer-
ence time. Models used in production 
typically have computational costs 
dominated by inference rather than 
training, but in research training is typ-
ically much more frequent, so we advo-
cate studying methods for efficient 
processing of one example in both 
training and inference.

Processing many examples. Increased 
amounts of training data have also 
contributed to progress in state-of-the-
art performance in AI. BERT-large had 
top performance in 2018 across many 
NLP tasks after training on three bil-
lion word-pieces. XLNet outperformed 
BERT after training on 32 billion word-
pieces, including part of Common 
Crawl; openGPT-2-XL trained on 40 bil-
lion words; FAIR’s RoBERTa28 was 
trained on 160GB of text, roughly 40 
billion word-pieces, requiring around 
25,000 GPU hours to train. T5-11B36 
was trained on 1 trillion tokens, 300 
times more than BERT-large. In com-
puter vision, researchers from Face-
book30 pretrained an image classifica-
tion model on 3.5 billion images from 
Instagram, three orders of magnitude 
larger than existing labeled image da-
tasets such as Open Images.k

The use of massive data creates barri-
ers for many researchers to reproducing 
the results of these models, and to train-
ing their own models on the same setup 
(especially as training for multiple ep-
ochs is standard). For example, the July 
2019 Common Crawl contains 242TB of 

k	 https://opensource.google.com/projects/
open-images-dataset

uncompressed data,l so even storing the 
data is expensive. Finally, as in the case of 
model size, relying on more data to im-
prove performance is notoriously ex-
pensive because of the diminishing re-
turns of adding more data.48 For instance, 
Figure 3, taken from Mahajan et al.,30 
shows a logarithmic relation between 
the object recognition top-1 accuracy 
and the number of training examples.

Massive number of experiments. 
Some projects have poured large 
amounts of computation into tuning 
hyperparameters or searching over neu-
ral architectures, well beyond the reach 
of most researchers. For instance, re-
searchers from Google59 trained over 
12,800 neural networks in their neural 
architecture search to improve perfor-
mance on object detection and lan-
guage modeling. With a fixed architec-
ture, researchers from DeepMind31 
evaluated 1,500 hyperparameter assign-
ments to demonstrate that an LSTM 
language model17 can reach state-of-
the-art perplexity results. Despite the 
value of this result in showing that the 
performance of an LSTM does not pla-
teau after only a few hyperparameter 
trials, fully exploring the potential of 
other competitive models for a fair 
comparison is prohibitively expensive.

The value of massively increasing 
the number of experiments is not as 
well studied as the first two discussed 
previously. In fact, the number of ex-
periments performed during model 
construction is often underreported. 
Nonetheless, evidence for a logarith-
mic relation exists here as well.9,10

Discussion. The increasing costs of 
AI experiments offer a natural econom-
ic motivation for developing more effi-
cient AI methods. It might be the case 
that at a certain point prices will be too 
high, forcing even researchers with 
large budgets to develop more efficient 
methods. Our analysis in Figure 2 
shows that currently most effort is still 
being dedicated to accuracy rather 
than efficiency. At the same time, AI 
technology is already very expensive to 
train or execute, which limits the abili-
ty of many researchers to study it, and 
of practitioners to adopt it. Combined 
with environmental pricetag of AI,47 we 
believe more effort should be devoted 
toward efficient AI solutions.

l	 http://commoncrawl.org/2019/07/

is common for each training step to re-
quire inference, so we discuss training 
and inference cost together as “pro-
cessing” an example (though see dis-
cussion below). Some works have used 
increasingly large models in terms of, 
for example, model parameters, and as 
a result, in these models, performing 
inference can require a lot of computa-
tion, and training even more so. For in-
stance, Google’s BERT-large8 contains 
roughly 350 million parameters. Ope-
nAI’s openGPT2-XL model35 contains 
1.5 billion parameters. AI2, our home 
organization, released Grover,57 also 
containing 1.5 billion parameters. 
NVIDIA released Megatron-LM,42 con-
taining over 8 billion parameters. 
Google’s T5-11B36 contains 11 billion 
parameters. Most recently, openAI re-
leased openGPT-3,4 containing 175 bil-
lion parameters. In the computer vi-
sion community, a similar trend is 
observed (Figure 1).

Such large models have high costs 
for processing each example, which 
leads to large training costs. BERT-
large was trained on 64 TPU chips for 
four days at an estimated cost of 
$7,000. Grover was trained on 256 TPU 
chips for two weeks, at an estimated 
cost of $25,000. XLNet had a similar ar-
chitecture to BERT-large, but used a 
more expensive objective function (in 
addition to an order of magnitude more 
data), and was trained on 512 TPU chips 
for 2.5 days, costing more than $60,000.f 
It is impossible to reproduce the best 
BERT-large results or XLNet results us-
ing a single GPU,g and models such as 
openGPT2 are too large to be used in 
production.h Specialized models can 
have even more extreme costs, such as 
AlphaGo, the best version of which re-
quired 1,920 CPUs and 280 GPUs to 
play a single game of Go,44 with an esti-
mated cost to reproduce this experi-
ment of $35,000,000.i,j

When examining variants of a single 
model (for example, BERT-small and 
BERT-large) we see that larger models 

f	 https://syncedreview.com/2019/06/27/the-
staggering-cost-of-training-sota-aimodels/

g	 See https://github.com/google-research/bert 
and https://github.com/zihangdai/xlnet.

h	 https://towardsdatascience.com/too-big-to-
deploy-how-gpt-2-is-breakingproduction-
63ab29f0897c

i	 https://www.yuzeh.com/data/agz-cost.html
j	 Recent versions of AlphaGo are far more effi-

cient.46
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we argue should be reported when AI 
research findings are published.

Measures of efficiency. To measure 
efficiency, we suggest reporting the 
amount of work required to generate a 
result. Specifically, the amount of work 
required to train a model, and if appli-
cable, the aggregated amount of work 
required for all hyperparameter tuning 
experiments. As the cost of an experi-
ment decomposes into the cost of a 
processing a single example, the size of 
the dataset, and the number of experi-
ments (Equation 1), reducing the 
amount of work in each of these steps 
will result in AI that is more green.

We do encourage AI practitioners to 
use efficient hardware to reduce energy 
costs, but the dramatic increase in 
computational cost observed over re-
cent years is primarily from modeling 
and algorithmic choices; our focus is 
on how to incorporate efficiency there. 
When reporting the amount of work 
done by a model, we want to measure a 
quantity that allows for a fair compari-
son between different models. As a re-
sult, this measure should ideally be 
stable across different labs, at different 
times, and using different hardware.

Carbon emission. Carbon emission 
is appealing as it is a quantity we want 
to directly minimize. Nonetheless it is 
difficult to measure the exact amount 
of carbon released by training or exe-
cuting a model, and accordingly—gen-
erating an AI result, as this amount de-
pends highly on the local electricity 
infrastructure (though see initial ef-
forts by Henderson et al.16 and Lacoste 
et al.25). As a result, it is not comparable 
between researchers in different loca-
tions or even the same location at dif-
ferent times.16

Electricity usage. Electricity usage is 
correlated with carbon emission while 
being time- and location-agnostic. 
Moreover, GPUs often report the 
amount of electricity each of their 
cores consume at each time point, 
which facilitates the estimation of the 
total amount of electricity consumed 
by generating an AI result. Nonethe-
less, this measure is hardware depen-
dent, and as a result does not allow for a 
fair comparison between different mod-
els developed on different machines.

Elapsed real time. The total running 
time for generating an AI result is a nat-
ural measure for efficiency, as all other 

We want to reiterate that Red AI 
work is extremely valuable, and in fact, 
much of it contributes to what we know 
about pushing the boundaries of AI. In-
deed, there is value in pushing the lim-
its of model size, dataset size, and the 
hyperparameter search budget.

In addition, Red AI can provide op-
portunities for future work to promote 
efficiency; for example, evaluating a 
model on varying amounts of training 
data will provide an opportunity for fu-
ture researchers to build on the work 
without needing a budget large enough 
to train on a massive dataset. Current-
ly, despite the massive amount of re-
sources put into recent AI models, 
such investment still pays off in terms 
of downstream performance (albeit at 
an increasingly lower rate). Finding the 
point of saturation (if such exists) is an 
important question for the future of AI. 
Moreover, Red AI costs can even some-
times be amortized, because a Red AI 
trained module may be reused by many 
research projects as a built-in compo-
nent, which doesn’t require retraining.

The goal of this article is twofold: 
first, we want to raise awareness to the 
cost of Red AI and encourage researchers 
that use such methods to take steps to al-
low for more equitable comparisons, 
such as reporting training curves. Sec-
ond, we want to encourage the AI com-
munity to recognize the value of work by 
researchers that take a different path, 
optimizing efficiency rather than accu-
racy. Next, we turn to discuss concrete 
measures for making AI more green.

GREEN AI
The term Green AI refers to AI research 
that yields novel results while taking into 
account the computational cost, encour-
aging a reduction in resources spent. 
Whereas Red AI has resulted in rapidly 
escalating computational (and thus car-
bon) costs, Green AI promotes approach-
es that have favorable performance/effi-
ciency trade-offs. If measures of 
efficiency are widely accepted as im-
portant evaluation metrics for research 
alongside accuracy, then researchers 
will have the option of focusing on the 
efficiency of their models with positive 
impact on both inclusiveness and the 
environment. Here, we review several 
measures of efficiency that could be re-
ported and optimized, and advocate 
one particular measure—FPO—which 

Some projects 
have poured 
large amounts 
of computation 
into tuning 
hyperparameters 
or searching 
over neural 
architectures, well 
beyond the reach of 
most researchers.
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between different approaches, unlike 
the measures described above. Third, 
FPO is often correlated with the run-
ning time of the model5 (though see 
discussion below). Unlike asymptotic 
runtime, FPO also considers the 
amount of work done at each time step.

Several packages exist for comput-
ing FPO in various neural network 
libraries,n though none of them con-
tains all the building blocks required 
to construct all modern AI models. We 
encourage the builders of neural net-
work libraries to implement such func-
tionality directly.

Discussion. Efficient machine learn-
ing approaches have received attention 
in the research community but are gen-
erally not motivated by being green. For 
example, a significant amount of work 
in the computer vision community has 
addressed efficient inference,13,38,58 
which is necessary for real-time process-
ing of images for applications like self-
driving cars,27,29,37 or for placing models 
on devices such as mobile phones.18,40 
Most of these approaches only minimize 
the cost of processing a single example, 
while ignoring the other two red practic-
es discussed perviously.o Other meth-
ods to improve efficiency aim to devel-
op more efficient architectures, starting 
from the adoption of graphical process-
ing units (GPU) to AI algorithms, which 
was the driving force behind the deep 
learning revolution, up to more recent 
development of hardware such as ten-
sor processing units (TPUs22).

The examples here indicate the path 
to making AI green depends on how it 
is used. When developing a new model, 
much of the research process involves 
training many model variants on a 
training set and performing inference 
on a small development set. In such a 
setting, more efficient training proce-
dures can lead to greater savings, while 
in a production setting more efficient 
inference can be more important. We 
advocate for a holistic view of computa-
tional savings which doesn’t sacrifice in 
some areas to make advances in others.

FPO has some limitations. Most im-
portantly, the energy consumption of a 

n	 For example, https://github.com/Swall0w/
torchstat; https://github.com/Lyken17/
pytorch-OpCounter

o	 In fact, creating smaller models often results 
in longer running time, so mitigating the dif-

ferent trends might be at odds.52

things being equal, a faster model is do-
ing less computational work. Nonethe-
less, this measure is highly influenced 
by factors such as the underlying hard-
ware, other jobs running on the same 
machine, and the number of cores 
used. These factors hinder the compar-
ison between different models, as well 
as the decoupling of modeling contri-
butions from hardware improvements.

Number of parameters. Another 
common measure of efficiency is the 
number of parameters (learnable or 
total) used by the model. As with run-
time, this measure is correlated with 
the amount of work. Unlike the other 
measures described previously, it 
does not depend on the underlying 
hardware. Moreover, this measure 
also highly correlates with the 
amount of memory consumed by the 
model. Nonetheless, different algo-
rithms make different use of their pa-
rameters, for instance by making the 
model deeper vs. wider. As a result, 
different models with a similar num-
ber of parameters often perform dif-
ferent amounts of work.

FPO. As a concrete measure, we 
suggest reporting the total number of 
floating-point operations (FPO) re-
quired to generate a result.m FPO pro-
vides an estimate of the amount of 
work performed by a computational 
process. It is computed analytically by 
defining a cost to two base operations, 
ADD and MUL. Based on these opera-
tions, the FPO cost of any machine 
learning abstract operation (for exam-
ple, a tanh operation, a matrix multipli-
cation, a convolution operation, or the 
BERT model) can be computed as a re-
cursive function of these two opera-
tions. FPO has been used in the past to 
quantify the energy footprint of a 
model,13,32,50,51 but is not widely adopt-
ed in AI. FPO has several appealing 
properties. First, it directly computes 
the amount of work done by the run-
ning machine when executing a spe-
cific instance of a model and is thus 
tied to the amount of energy con-
sumed. Second, FPO is agnostic to 
the hardware on which the model is 
run. This facilitates fair comparisons 

m	 Floating point operations are often referred to 
as FLOP(s), though this term is not uniquely 

defined.13 To avoid confusion, we use the term 
FPO.

The term Green AI  
refers to AI 
research that yields 
novel results while 
taking into account 
the computational 
cost, encouraging 
a reduction in 
resources spent.
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lead to efficient models should be cred-
ited by the AI community.

FPO cost of existing models. To 
demonstrate the importance of report-
ing the amount of work, we present 
FPO costs for several existing models.q 
Figure 4(a) shows the number of pa-
rameters and FPO of several leading 
object recognition models, as well as 
their performance on the ImageNet 

q	 These numbers represent FPO per inference, 
that is, the work required to process a single 
example.

model is not only influenced by the 
amount of work, but also from other 
factors such as the communication be-
tween the different components, which 
is not captured by FPO. As a result, FPO 
doesn’t always correlate with other mea-
sures such as runtime21 and energy con-
sumption.16 Second, FPO targets the 
number of operations performed by a 
model, while ignoring other potential 
limiting factors for researchers such as 
the memory used by the model, which 
can often lead to additional energy and 
monetary costs.29 Finally, the amount of 

work done by a model largely depends 
on the model implementation, as two 
different implementations of the same 
model could result in very different 
amounts of processing work. Due to the 
focus on the modeling contribution, the 
AI community has traditionally ignored 
the quality or efficiency of models’ im-
plementation.p We argue the time to re-
verse this norm has come, and that ex-
ceptionally good implementations that 

p	 We consider this exclusive focus on the final 
prediction another symptom of Red AI.

Figure 4. Increase in FPO leads to diminishing return for object detection top-1 accuracy. Plots (bottom to top): model parameters (in million), 
FPO (in billions), top-1 accuracy on ImageNet. 4(a). Leading object recognition models: AlexNet,24 ResNet,15 ResNext,55 DPN107,6 SENet154.19 
4(b): Comparison of different sizes (measured by the number of layers) of the ResNet model.15
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to recognize and value contributions 
that do not strictly improve state of the 
art but have other benefits such as effi-
ciency. Finally, we note that the trend of 
releasing pretrained models publicly is 
a green success, and we would like to 
encourage organizations to continue 
to release their models in order to save 
others the costs of retraining them.

Related Work
Recent work has analyzed the carbon 
emissions of training deep NLP mod-
els47 and concluded that computation-
ally expensive experiments can have a 
large environmental and economic 
impact. With modern experiments us-
ing such large budgets, many re-
searchers (especially those in aca-
demia) lack the resources to work in 
many high-profile areas; increased 
value placed on computationally effi-
cient approaches will allow research 
contributions from more diverse 
groups. We emphasize that the con-
clusions of Stubell et al.47 are the re-
sult of long-term trends, and are not 
isolated within NLP, but hold true 
across machine learning.

While some companies offset elec-
tricity usage by purchasing carbon 
credits, it is not clear that buying cred-
its is as effective as using less energy. 
In addition, purchasing carbon cred-
its is voluntary; Google clouds and Mi-
crosoft Azuret purchase carbon credits 
to offset their spent energy, but Ama-
zon’s AWSu (the largest cloud comput-
ing platformv) only covered 50% of its 
power usage with renewable energy.

The push to improve state-of-the-art 
performance has focused the research 
community’s attention on reporting the 
single best result after running many ex-
periments for model development and 
hyperparameter tuning. Failure to fully 
report these experiments prevents fu-
ture researchers from understanding 
how much effort is required to repro-
duce a result or extend it.9

Our focus is on improving efficien-
cy in the machine learning communi-
ty, but machine learning can also be 
used as a tool for work in areas like 

s	 https://cloud.google.com/sustainability/
t	 https://www.microsoft.com/en-us/environ-

ment/carbon
u	 https://aws.amazon.com/about-aws/sustain-

ability/
v	 https://tinyurl.com/y2kob969

climate change. For example, ma-
chine learning has been used for re-
ducing emissions of cement plants1 
and tracking animal conservation 
outcomes,12 and is predicted to be 
useful for forest fire management.39 
Undoubtedly these are important ap-
plications of machine learning; we 
recognize they are orthogonal to the 
content of this article.

Conclusion
The vision of Green AI raises many ex-
citing research directions that help to 
overcome the challenges of Red AI. 
Progress will find more efficient ways 
to allocate a given budget to improve 
performance, or to reduce the compu-
tational expense with a minimal re-
duction in performance. Also, it would 
seem that Green AI could be moving us 
in a more cognitively plausible direc-
tion as the brain is highly efficient.

It is important to reiterate that we see 
Green AI as a valuable option, not an ex-
clusive mandate—of course, both Green 
AI and Red AI have contributions to 
make. Our goals are to augment Red AI 
with green ideas, like using more effi-
cient training methods, and reporting 
training curves; and to increase the prev-
alence of Green AI by highlighting its 
benefits, advocating a standard measure 
of efficiency. Here, we point to a few im-
portant green research directions, and 
highlight a few open questions.

Research on building space- or time-
efficient models is often motivated by 
fitting a model on a small device (such 
as a phone) or fast enough to process ex-
amples in real time, such as image cap-
tioning for the blind (as discussed previ-
ously). Here, we argue for a far broader 
approach that promotes efficiency for 
all parts of the AI development cycle.

Data efficiency has received signifi-
cant attention over the years.23,41,49 

Modern research in vision and NLP of-
ten involves first pretraining a model 
on large “raw” (unannotated) data 
then finetuning it to a task of interest 
through supervised learning. A strong 
result in this area often involves 
achieving similar performance to a 
baseline with fewer training examples 
or fewer gradient steps. Most recent 
work has addressed fine-tuning data,34 
but pretraining efficiency is also im-
portant. In either case, one simple 
technique to improve in this area is to 

dataset.7,r A few trends are observable. 
First, as discussed earlier, models get 
more expensive with time, but the in-
crease in FPO does not lead to similar 
performance gains. For instance, an 
increase of almost 35% in FPO between 
ResNet and ResNext (second and third 
points in graph) resulted in a 0.5% top-1 
accuracy improvement. Similar pat-
terns are observed when considering 
the effect of other increases in model 
work. Second, the number of model pa-
rameters does not tell the whole story: 
AlexNet (first point in the graph) actu-
ally has more parameters than ResNet 
(second point), but dramatically less 
FPO, and also much lower accuracy.

Figure 4(b) shows the same analysis 
for a single object recognition model, 
ResNet,15 while comparing different ver-
sions of the model with different num-
bers of layers. This creates a controlled 
comparison between the different mod-
els, as they are identical in architecture, 
except for their size (and accordingly, 
their FPO cost). Once again, we notice 
the same trend: the large increase in 
FPO cost does not translate to a large in-
crease in performance.

Additional ways to promote Green 
AI. There are many ways to encourage 
research that is more green. In addi-
tion to reporting the FPO cost for each 
term in Equation 1, we encourage re-
searchers to report budget/perfor-
mance curves where possible. For ex-
ample, training curves provide 
opportunities for future researchers to 
compare at a range of different bud-
gets and running experiments with dif-
ferent model sizes provides valuable 
insight into how model size impacts 
performance. In a recent paper,9 we ob-
served that the claim as to which model 
performs best depends on the compu-
tational budget available during model 
development. We introduced a method 
for computing the expected best vali-
dation performance of a model as a 
function of the given budget. We argue 
that reporting this curve will allow us-
ers to make wiser decisions about their 
selection of models and highlight the 
stability of different approaches.

We further advocate for making ef-
ficiency an official contribution in ma-
jor AI conferences by advising reviewers 

r	 Numbers taken from https://github.com/
sovrasov/flops-counter.pytorch.
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simply report performance with dif-
ferent amounts of training data. For 
example, reporting performance of 
contextual embedding models trained 
on 10 million, 100 million, 1 billion, 
and 10 billion tokens would facilitate 
faster development of new models, as 
they can first be compared at the 
smallest data sizes.

Research here is of value not just to 
make training less expensive, but be-
cause in areas such as low resource lan-
guages or historical domains it is ex-
tremely difficult to generate more data, 
so to progress we must make more ef-
ficient use of what is available.

Finally, the total number of experi-
ments run to get a final result is often 
underreported and underdiscussed.9 
The few instances researchers have of 
full reporting of the hyperparameter 
search, architecture evaluations, and 
ablations that went into a reported ex-
perimental result has surprised the 
community.47 While many hyperpa-
rameter optimization algorithms ex-
ist, which can reduce the computa-
tional expense required to reach a 
given level of performance,3,11 simple 
improvements here can have a large 
impact. For example, stopping train-
ing early for models that are clearly 
underperforming can lead to great 
savings.26
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