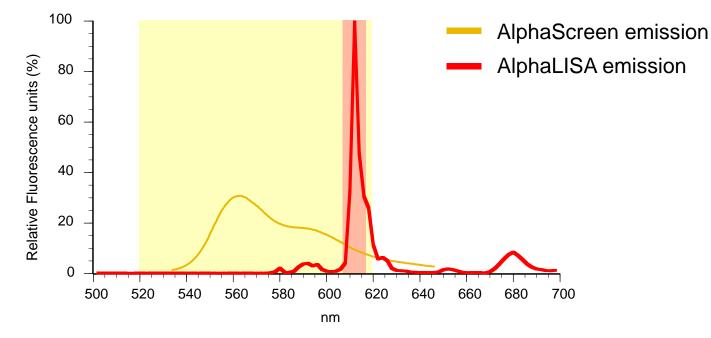
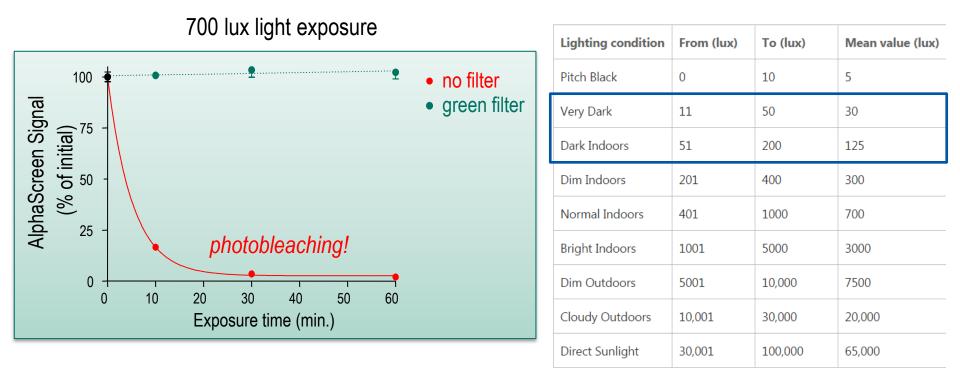


HUMAN HEALTH | ENVIRONMENTAL HEALTH


How to run Alpha assay:

How to setup an Alpha assayMake your own assay!

- Samples:
 - Phenol red and hemoglobin: choose AlphaLISA beads instead of AlphaScreen beads
 - Pay attention to RPMI and tissue homogenates: they can contain biotin which will bind to streptavidin-coated beads
 - Biotin-free kits are available
 - Carefully plan order of addition (pre-incubate biotinylated antibody + streptavidin-beads)
 - 1% FBS or 0.1% BSA can be added to cell culture medium to enhance assay sensitivity
 - Serum samples: serum should not exceed 10% of final assay
 - If necessary, dilute your samples with AlphaLISA buffer
- Standard curve:
 - Prepare:
 - standard curve in the **same matrix** as samples (lysis buffer, serum without analyte) and
 - standard curve in AlphaLISA buffer in parallel to check interference from matrix.
 - If samples are diluted in AlphaLISA Buffer, prepare a standard curve in diluted matrix (example, serum diluted in AlphaLISA buffer)

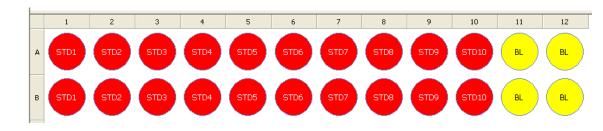


AlphaLISA beads contain europium:

- highly intense and spectrally defined signal
- high signal/bickground ratio
- works in different samples including serum, plasma & cell culture supernatant

Donor beads: effect of light exposure

- Switch off lights!
- Avoid direct day light ($\leq 100 \text{ lux}$)
- Protect Donor beads vials with aluminum
- Cover plate (with another plate)
- Incubate plate in the dark (drawer)
- Use green filters


EnSpire multi-mode reader

Please select a protocol and press the 'Run' button above							
	Valid	Technology	Name				
ð		Abs	Protein Concentration Absorbance				
ð		Abs	Spectrum Scan Absorbance				
ð		Abs	Nucleotide Purity Absorbance				
8 8 8		Alpha	Alpha 96-well				
	-	Alpha	Alpha 384-well Low Volume				
Ð	-	Alpha	Alpha 384-well				
ð		Alpha	Performance IPA Alpha				

Perki

ner For the Better

Curve fitting UNK calculation

Alpha Absorbance Fluorescence top & bottom Ultra-sensitive luminescence TRF Label-free

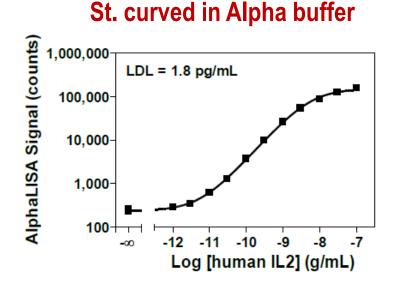
Source	Meas A (Alpha)				
Fitting	4₽L	Advanced options	- C	Concentration options	
Weighted	< Weighted 😜		STD	Concentration	-
X-axis scale	Logarithmic		1	30000	
X uxis scule			2	10000	
Y-axis scale	Logarithmic		3	3000	
Concentration unit			4	1000	
concerta ación anic	pg/ml		5	300	
			6	100	
			7	30	

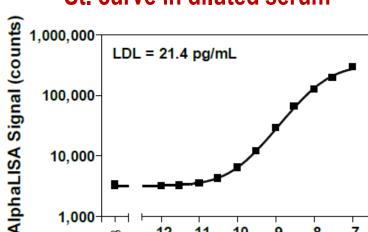
8

9

10

10


3


1

5

- Plot signal vs concentration of analyte (Log scale for either or both axes)
- Analyze data according to a nonlinear regression using the 4-Parameter Logistic equation (Sigmoidal Dose-Response curve with variable slope)
- Add 1/Y² weighting ≻
- Values at maximal concentrations of analyte after the hook point must be **removed**
- LDL (12 blk) = average + $3 \times \text{st.dev}$.

12

-00

St. curve in diluted serum

Notice the matrix effect of serum

-9

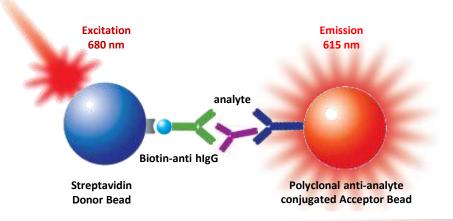
-10

Log [human IL2] (g/mL)

-8

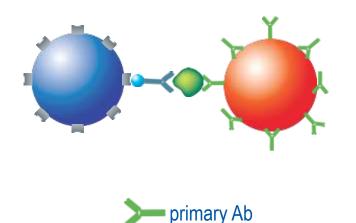
-7

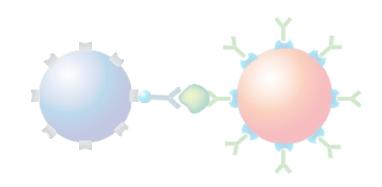
HUMAN HEALTH | ENVIRONMENTAL HEALTH


Make your own assay

Develop your own assay with Alpha Toolbox

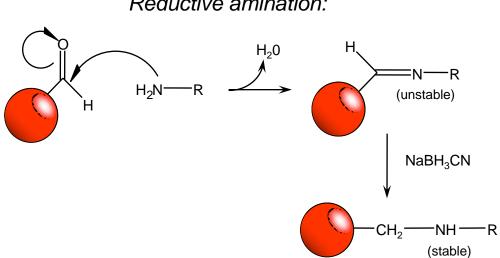
Beads can be coated with antibodies or other binding molecules to develop virtually any immunoassay


Protein-protein interactions	Biomarkers	Pathway mapping	Cellular markers				
	Biotherapeutics	Histone modifications					


Virtually any assay can be developed, as long as you can bring the beads together

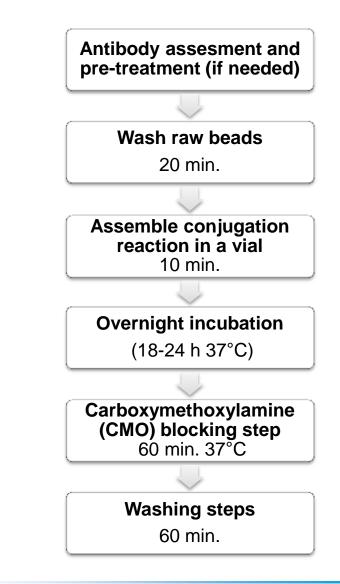
Alpha immunoassay formats: conjugation vs. indirect binding

1 Protein A (or secondary IgG)


Direct conjugation

- Simple reaction (1 night incubation)
- Good control on binding events
- Random coupling (antibodies aligned randomly)
- Simple stoichiometry in Alpha assay

Indirect binding


- No custom bead conjugation required
- Save expensive primary Ab
- Antibodies aligned optimally
- Additional equilibrium introduced
- Needs high affinity primary Ab + beads with selective secondary Ab or proteins A/G/L

Reductive amination:

- Monoclonal or purified polyclonal antibodies will perform best; avoid anti-sera
- Antibody concentration must be at least **1 mg/ml**
- Antibody must not be in any amine-based buffer, including TRIS, glycine, bicine, tricine, etc... Perform a buffer exchange in PBS pH 7.4
- Antibody solution must not contain any protein (such BSA or gelatin) and glycerol

Acceptor beads are preferred for conjugation

Many types of derivatized beads

Donor beads:

Acceptor beads:

Streptavidin Nickel chelate (His-tag) GSH Protein A Anti-FLAG Anti-DIG Anti-mouse lgG Anti-Rabbit IgG Strep-Tactin LCA (Lens Culinaris Agglutinin)

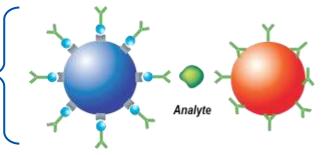
Protein A Protein G Protein L Anti-human IgG1	Anti-mouse IgE IgM
Anti-human IgG4 Anti-human IgG Anti-rabbit IgG Anti-mouse IgG Anti-rat IgG	lgG1 IgG2a IgG2b IgG3 (isotyping)
Anti-goat IgG Anti-Mouse IgM Anti-Chicken IgY Anti-Sheep IgG Anti-bovine IgGA, Ig IgGM	G, IgG1, IgG2,

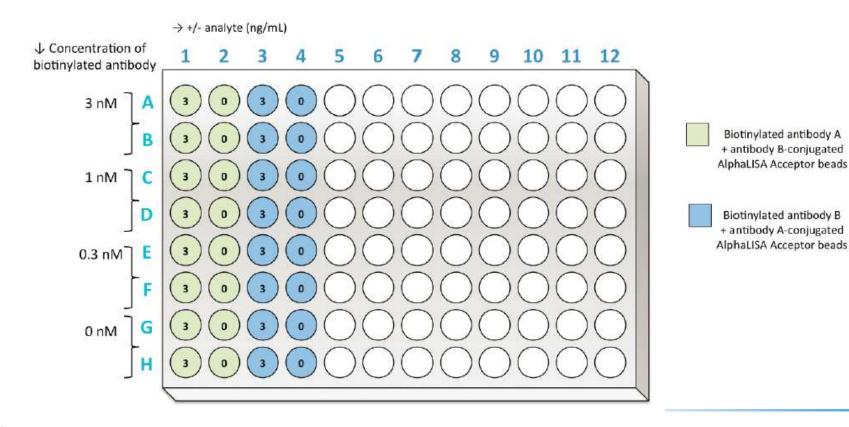
Antibody capture

-mouse: 2a 2b typing)

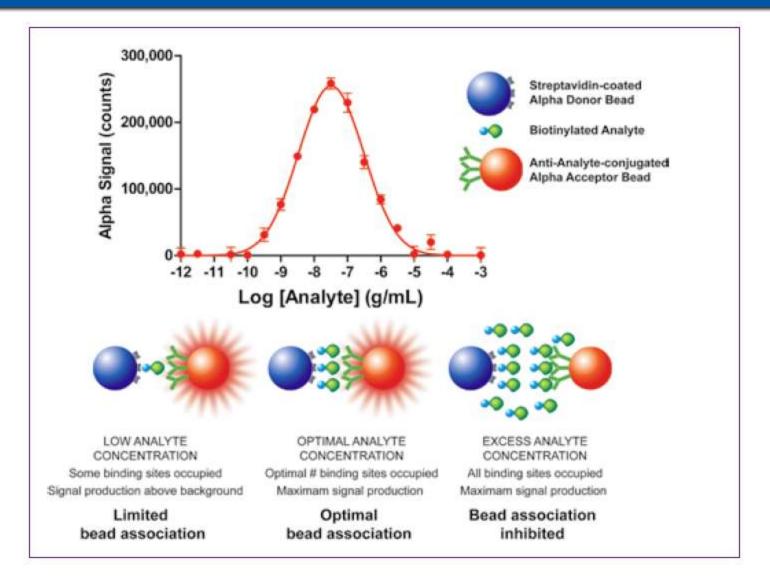
Fusion Tag detection

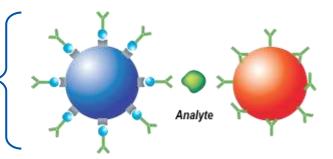
Nickel chelate (His-tags) Anti-His Glutathione (GSH) Anti-GST Anti-c-myc Anti-FLAG Anti-DIG Anti- HA Anti-FITC Anti-V5 Anti-GFP Anti-MBP LCA Strep-Tactin Streptavidin

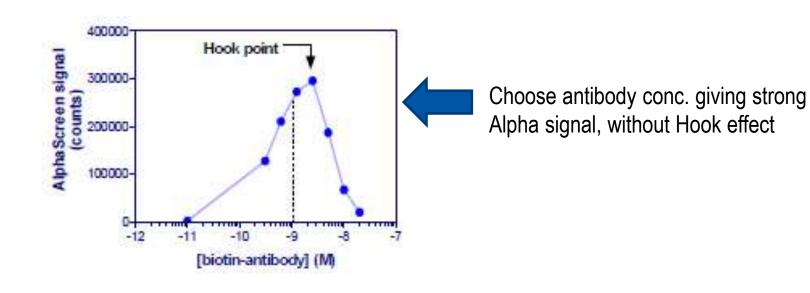

Streptavidin donor beads are generally preferred


- > Protein A interacts strongly with:
 - Human IgG1, IgG2 and IgG4 and total IgG
 - Mouse IgG2A and IgG2B and total IgG
 - Rabbit total IgG
- Protein G binds to all subclasses of human and mouse IgG and to rat, goat, sheep, guinea pig, rabbit, cow, pig and horse antibodies
- Protein L binds to:
 - Total human IgG, IgM, IgA, IgE, IgD
 - Mouse IgG
 - Rat IgG
 - Binds poorly to mouse IgM and rabbit IgM
 - Does not bind to rabbit, sheep, goat and bovine IgG and IgM

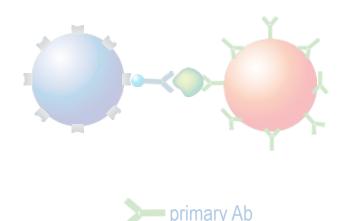
Titration of biotinylated antibody

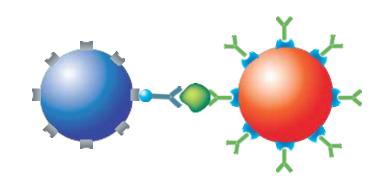

The conc. of biotinylated antibody must be titrated to avoid Hook effect


Hook effect in homogeneous assays



Titration of biotinylated antibody

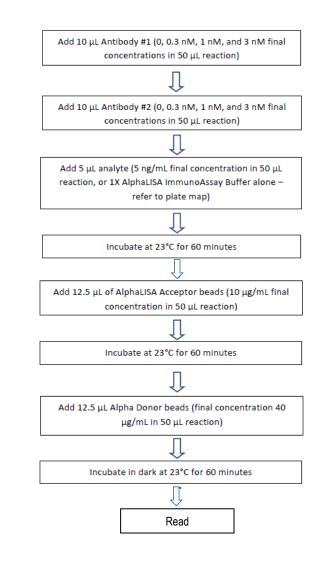


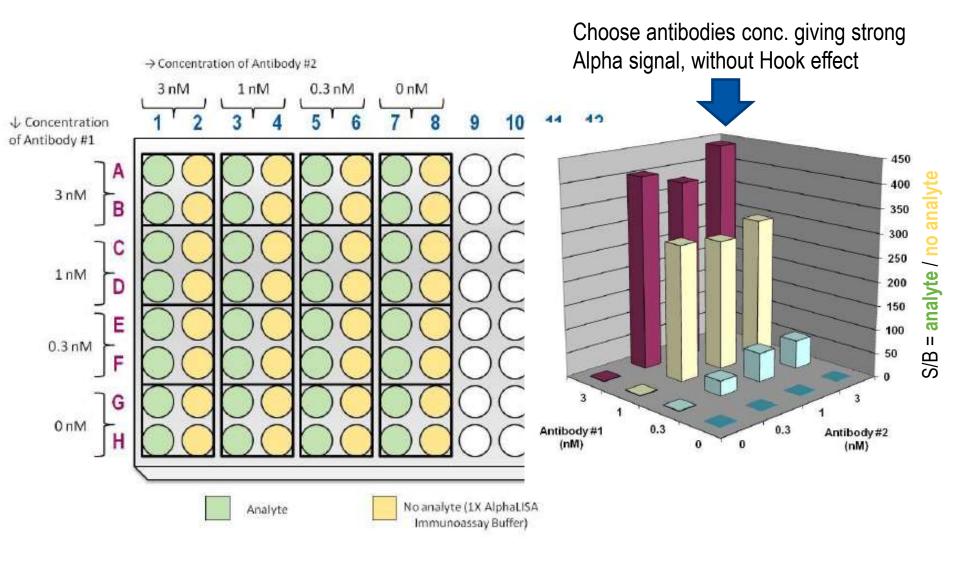

The conc. of biotinylated antibody must be titrated to avoid Hook effect

1 Protein A (or secondary IgG)

Direct conjugation

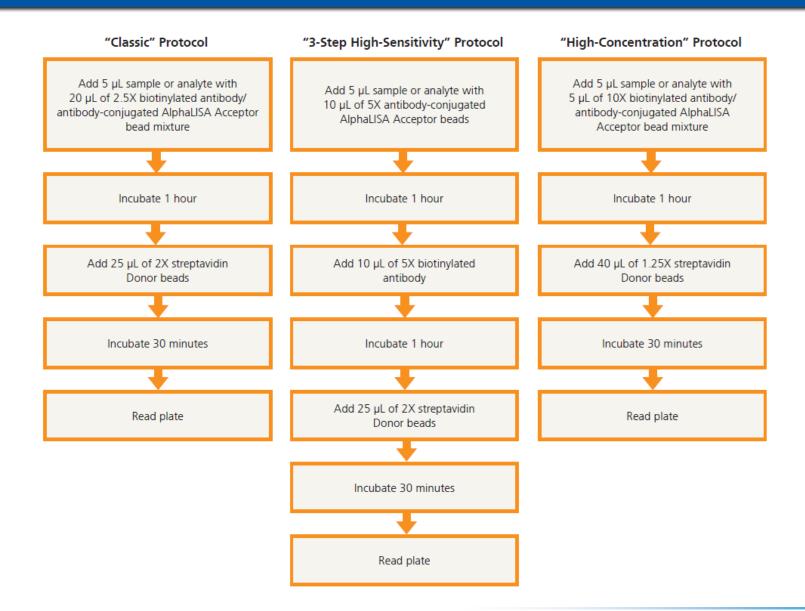
- Simple reaction (1 night incubation)
- Good control on binding events
- Random coupling (antibodies aligned randomly)
- Simple stoichiometry in Alpha assay


Indirect binding


- No custom bead conjugation required
- Save expensive primary Ab
- · Antibodies aligned optimally
- Additional equilibrium introduced
- Needs high affinity primary Ab + beads with selective secondary Ab or proteins A/G/L

Check beads compatibility (antibody cross-reactivity):

	DONOR BEADS												
ACCEPTOR BEADS	Streptavidin (6750002)	Anti-FLAG (AS103)	Anti-Mouse (AS104)	Anti-Rabbit (AS105)	Streptactin (AS106)	Ni chelate (AS101)	Glutathione (6765300)	Protein A (AS102)	Anti-DNP (AS111)	Anti-HRP (AS109)	Anti-Rat (AS110)	Ants-DIG (AS108)	Anti-OFP (AS112)
Streptavidin (AL125)	0	0	0	8	9	9	9	9	0	9	0	0	0
Protein L (AL126)	0	0	0	9	0	0	0	9	9	9	0	0	0
Anti-FITC (AL127)	0	0	0	0	0	0	0	0	9	9	0	9	0
Anti-His (AL128)	0	0	0	0	0	9	0	0	0	0	0	9	0
Anti-V5 (AL129)	0	0	0	0	0	9	0	0	9	0	0	0	0
Anti-Mouse IgM (AL130)	0	0	0	0	0	0	0	0	0	٢	٢	0	0
Anti-Chicken IgY (AL131)	0	0	0	0	0	٢	0	0	0	0	0	0	0
Anti-Sheep IgG (AL132)	0	0	0	0	0	0	0	0	9	9	0	0	0
Anti-GFP (AL133)	0	0	0	0	0	0	0	0	٢	9	0	0	0
Anti-MBP (AL134)	0	0		0	0	0	0	0	9	8	0	0	0
Streptactin (Al136)	0	0	0	0	0	0	9	9	0	0	0	0	9
Protein A (AL101)	0	0	۲	٢	۲	0	0	0	0	٢	٢	9	0
Protein G (AL102)	0	0	•	0	0	0	0	0	Q.	0	0	0	0
Anti-Human IgG (AL103)	0	0	0	0	0	Ø	0	0	0	0	0	0	0
Anti-Rabbit IgG (AL104)	9	0	0	0	9	0	0	0	9	9	9	9	0
Anti-Mouse IgG (AL105)	0	0	0	8	0	9	0	9	9	9	0	0	0
Anti-Rat IgG (AL105)	0	0	0	0	0	0	9	9	9	9	0	9	3
Anti-Goat IgG (AL107)	0	0	0	0	0	0	0	0	8	0	0	9	9
Ni chelate (AL108)	0	0	0	0	0	0	0	0	9	0	0	0	0
Glutathione (AL109)	0	0	0	0	0	0	0	0	9	0	0	3	9
Anti-GST (AL110)	0	0	0	0	0	0	0	0	0	0	0	0	0
Anti-cMyc (AL111)	0	0	0	0	0	0	0	0	0	0	0	0	0
Anti-FLAG (AL112)	0	٢	0	0	0	0	0	0	٥	0	0	0	0
Anti-Digoxigenin (AL113)	0	0	0	0	0	0	0	0	0	0	0	0	0
Anti-ONP (AL173)	0	0	0	0	0	0	0	0	0	0	0	0	0
Anti-HRP (AL171)	0	0	0	0	0	0	0	0	0	0	0	0	0
Anti-Protein C tag (AL172)	0	0	0	0	0	0	0		0	0	0	0	0
Anti-HA (AL170)	0	0	0	0	0	0	0	0	9	0	0	0	0
Anti-Mouse IgG (AL164)	0	0	0	0	0	0	0	0	0	9	0	0	0
Anti-Human IgG1 (AL153)	0	0	0	0	0	0	0	0	0	0	0	0	0
Anti-Human IgG2 (AL154)	0	0	0	0	0	0	0	0	9	9	0	0	0
Anti-Human IgG4 (AL156)	0	0	0	0	0	0	0	0	4	9	0	0	0
Anti-Mouse IgE (AL161)	0	0	0	0	0	0	0	0	0	9	0	0	0
Anti-Mouse IgG1 (AL157)	0	0	0	0	0	0	0	0	9	0	0	0	0
Anti-Mouse IgG2a (AL158)	0	0	0	0	0	0	0	0	0	0	0	0	0
Anti-Mouse IgG2b (AL159)	0	0	0	0	0	0	0	0	0	9	0	0	0
Anti-Mouse IgG3 (AL160)	0	0	0	0	0	0	0	0	0	0	0	0	0
Anti-Mouse IgM (AL162)	0		0	0	0	0	0	0	0	0	0	0	0
LCA (AL140)	0	0	0	0	0	9	0	0	0	9	0	9	0



- > Bead concentration: 10 40 μ g/ml, keeping the ratio antibody/bead constant
- Incubation time: 30' overnight
- Assay volume and sample volume
- Assay buffers
 - Tris, HEPES, PBS at different pH values
 - Mild detergents like Tween-20, CHAPS and Triton X-100 (0.01% 1%)
 - Protein blockers, such as casein or BSA, at a concentration between 0.01 to 1%
 - Dextran 500: for some serum or plasma samples, it is important to add Dextran 500 at 1 mg/mL in order to prevent non-specific bead aggregation

More optimizations (2): order of addition

