

The lipid classes and fatty acids as principal components: an overview of structures, functions and the main physiological /pathological roles

Carla Ferreri, Senior Researcher CNR, Bologna

Lipids: definition

Lipids are chemical structures with biological roles in living organisms that are classified together due to their water insolubility

From the Greek word LIPOS

Lipid classes

Lipid classes

Lipid classes

> Fatty acid structures

From triglycerides to phospholipids: lipid metabolism for life

Membrane formation and organization

Carboxylic group (H⁺)

Basic molecular structure to build up LIPIDS

2-carbon atom structure repeated several times: EVEN number

□ CARBOXYLIC GROUP – start

\Box define the position of the unsaturation Δ of the unsaturated fats

METHYL GROUP - Chain end
(define the position of the end The ω of the unsaturated fats)

Nomenclature of fatty acids

n. Of C atoms/ n. double bonds

Nomenclature of fatty acids

n. Of C atoms/ n. double bonds Common name

Iauric acid miristic acid palmitic acid stearic acid arachidic acid

palmitoleic acid oleic acid linoleic acid linolenic acid arachidonic acid

Nomenclature of fatty acids

	n. Of C n. dou	atoms/ Ible bonds	Common name	melting point (°C)	
-	12:0	СООН	lauric acid	44	
SFA	14:0	[CH ₂] n	miristic acid	58	
	16:0	CH ₂	palmitic acid	63	
	18:0		stearic acid	70	
	20:0	CH₂ │ CH₃	arachidic acid	77	
MUFA PUFA	16:1		palmitoleic acid	32	
	18:1		oleic acid	16	
	18:2		linoleic acid	- 5	
	18:3		linolenic acid	- 11	
	20:4	I CH₃	arachidonic acid	- 49	

Fatty acid structures

Palmitic acid 16:0

Oleic acid 18:1

SATURATED

Effects of physical properties on biological properties

UNSATURATED

CIS

Fatty acid structures

SATURATED

MONO UNSATURATED, MUFA

POLYUNSATURATED PUFA

ALL NATURAL UNSATURATED FATTY ACIDS ARE CIS ISOMERS

Desaturase mechanism

http://www.lipidhome.co.uk/lipids/fa-eic/fa-mono/index.htm

Polyunsaturated fatty acids

PUFA

With more than one double bond separated by one methylenic group CH₂

Alpha-Linolenic acid 18:3^{9,12,15} - 18:3, **0**-3)

all cis-A9,12,15 -octadecatrienoic acid

Fundamental transformation

Essential PUFA

Eczema, allergies, hair loss arthritis, high pressure, high cholesterol 8-12 g/d LA assumption

Umega-3

Allergy, Alzheimer, CV risk,

immune deficiency, INFLAMMATION

1.1 g/d ALA

EPA-DHA (250 mg/d)

JMeo

EFSA

WHO

FAO

Omega-6/omega-3 nutritional ratio 4:1 – 1:1

PUFA transformations

Eicosanoids

Prostaglandins, leukotriens, etc...

What is LIPIDOMICS

membrana cellulare e lipidomica

Lipidomics studies LIPIDS in a DYNAMIC CONTEXT of transformations under physiological and pathological conditions, evaluating the balance between nutrition and metabolism. It is part of metabolomics when the processes belongs to metabolic pathways, whereas LIPIDOMICS of CELL MEMBRANE belongs to cell regulatory systems which decide the fate of cells, tissues and the whole organism.

From MEMBRANES: release of LIPID MEDIATORS

Nature Chemical Biology 6, 401–402 (2010)

Functional & membrane lipidomics

How we can influence membrane predisposition by the diet

A. Simopoulos, Exp. Biol.Med. 2008, 233, 674-688

What about pets?

Fatty acid structures

From triglycerides to phospholipids: lipid metabolism for life

Membrane formation and organization

Fatty acid-containing lipids

Transport and deposit

Transport and exchange

Nutrition and Metabolism

Quality of fatty acids

Triglycerides are the main components of fats and oils and the most abundant lipids in Nature. FATS are solids/semisolds, OILS are liquids.

3 fatty acid units (hydrophobic) of different composition

	SATUR	ATED	MUFA	Omega-6	Omega-3
%	16:0	18:0	18:1	18:2n6	18:3n3
Olive	12	2	72	11	1
Palm	42	4	43	8	0
Linseed	12	1	15	17	(55)
Sunflower	б	6	33	LA 53	0
Salmon [*]	19	4	23	1 (20-35%

EPA + DHA

Quality of the oils for essential fat intakes

Physical status= molecular status

Saturated triglycerides SOLID

Unsaturated triglycerides LIQUID

FLUIDITY For the unsaturation

- Lecithins are rich of phospholipids
 - Used as emulsifying agents
 - Contains several types of fatty acids ready to be incorporated in the body (not hydrolysed by lipases)\ the most used are not rich in omega-3

A phospholipid

Use of triglycerides

All fatty acid-cont. lipids

- degradation (acetyl groups)
- building block for lipids

Lipid transport in blood

Albumin complex with fatty acids (protection from oxidations)

LIPOPROTEINS: accurate choice of fatty acid types; preference for UNSATURATED lipids. Regulation of fatty acid availability. BBA Biomembranes 2017

apolipoproteins

Phospholipids - Cholesterol

Cholesteryl esters and TG

REVISION of the FOOD PYRAMIDS

Omega 3 Fatty Acids and Bioactive Foods: From Biotechnology to Health Promotion

Healthy Eating Pyramid

Harvard School of Public Health

C. Ferreri Consiglio Nazionale delle Ricerche, Bologna, Italy

Alteration of the double bonds

EXOGENOUS INTAKE of TRANS FATTY ACIDS DETECTION OF TRANS FATTY ACIDS IN OMEGA-3 SUPPLEMENTS

(Chem. Res. Toxicol. 2018) due to the DEODORIZATION PROCESS for FISH OILS

Fatty acid structures

From triglycerides to phospholipids: lipid metabolism for life

Membrane formation and organization

https://www.youtube.com/watch? v=LKN5sq5dtW4

Molecular organization

Amphipatic structure

Polar head

Apolar tails Fatty acids

Glycerophospholipids

Lipid aggregation

Fatty acid aggregation

MICELLES

Le singole unità hanno una forma cilindrica (la sezione trasversale della testa è uguale a quella delle catene idrocarburiche)

(b)

(c)

Cavità acquosa Phospholipid aggregation

Double layer LIPOSOME (vesicles)

Internal aqueous compartment

The formation of the protocell

